CO₂ – By the Numbers

Winchester Unitarian Society Speaker Series

Pete Baldwin pete_baldwin@base-e.net 617-306-7419

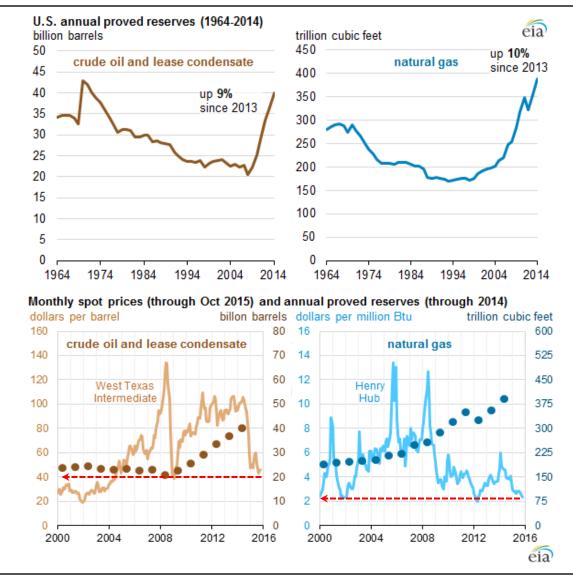
Without data you're just another person with an opinion.

W. Edwards Deming

Energy Policy = Choice of Fuel(s)

Global energy supply will be "plentiful" for years, BP exec says.

"The world will have no shortage of energy over the next 35 years, according to BP Group Head of Technology David Eyton. "Energy resources are plentiful.


Concerns over running out of oil and gas have disappeared," he said.

Improved oil and natural gas industry technology means that government policies will be a greater determining factor in energy supply than availability of resources."

Reuters (11/2)

U.S. Proven Reserves & Price

"Practical Strategies for Emerging Energy Technologies"

Fuel Value Chain Systemic Shocks

– Oil

- Oil price
- U.S. shale oil production
- U.S. crude oil export restrictions

– Natural Gas

- Oil-linked price indexing Asia & EU
- Developing resource worldwide
- LNG export
- Russian gas to EU or China

- Coal

- EPA New Source Performance Standard
- EPA Clean Power Plan

- Nuclear

- Continuing Fukushima effects

- Technology

- Seismic & imaging tools
- Horizontal drilling
- Fracking

- Environmental Issues

- Climate Change
- Oil-Water nexus
- Pipelines & tank cars
- Fracking methods & produced water disposal
- Canadian "Dirty Oil" resources
- Nuclear waste disposal
- Renewables
 - System integration
 - Energy storage
 - Renewable Portfolio Standards (RPS)
 - Production Tax Credits (PTC)

- Geo-Political Instabilities

- Russia/Ukraine
- Iran Sanctions
- Iraq/Syria/Yemen/Libya
- Nigeria/Venezuela
- Russia/Turkey

- Supply Shortfalls

- UK
- Mexico
- Brazil
- Iraq/Syria/Yemen/Libya

- Territorial Disputes/Issues

- South China Sea
- The Arctic

base

Basic Comparisons

	China	USA	India	Japan	Germany	Russia
Population - July 2015 est	1,367,485,388	321,368,864	1,251,695,584	126,919,659	80,854,408	142,423,773
Population Growth Rate	0.45%	0.78%	1.22%	-0.16%	-0.17%	-0.04%
Area - km ²	9,596,960	9,826,675	3,287,263	377,915	357,022	17,098,242
GDP - Purchasing Power Parity (\$trillion)	17.6	17.5	7.3	4.8	3.6	3.6
Installed Generating Capacity GW	1,505	1,053	223	287	178	240
% of World at 5,550 GW	27%	19%	4%	5%	3%	4%
Electric Production TWh	5,169	4,048	975	963	576	1,054
Electric Consumption TWh	4,831	3,883	758	860	583	1,037
Aggregate Load Factor	39.2%	43.9%	49.8%	38.3%	36.9%	50.2%
Natural Gas Production - BCM	117.1	687.6	36.0	3.2	11.8	668.0
Natural Gas Consumption - BCM	161.6	737.3	54.0	127.2	88.4	413.5
Refined Petroleum Products Production - mmbbl/d	9.6	18.5	4.4	3.6	2.2	4.8
Refined Petroleum Products Consumption - mmbbl/d	10.8	18.9	3.2	4.5	2.4	3.3
Coal Production - Million Tonnes Oil Equivalent	1844.6	507.8	243.5	0.7	43.8	170.9
Coal Consumption - Million Tonnes Oil Equivalent	1962.4	453.4	360.2	126.5	77.4	85.2

Source: CIA World Factbook

World Total Installed Electrical Generating Capacity 5,550 GW

"Practical Strategies for Emerging Energy Technologies"

base

Ps.....Total Value of Outstanding Student Loans - \$1.3 trillion U.S. health care cost 2014 – 3.0 trillion

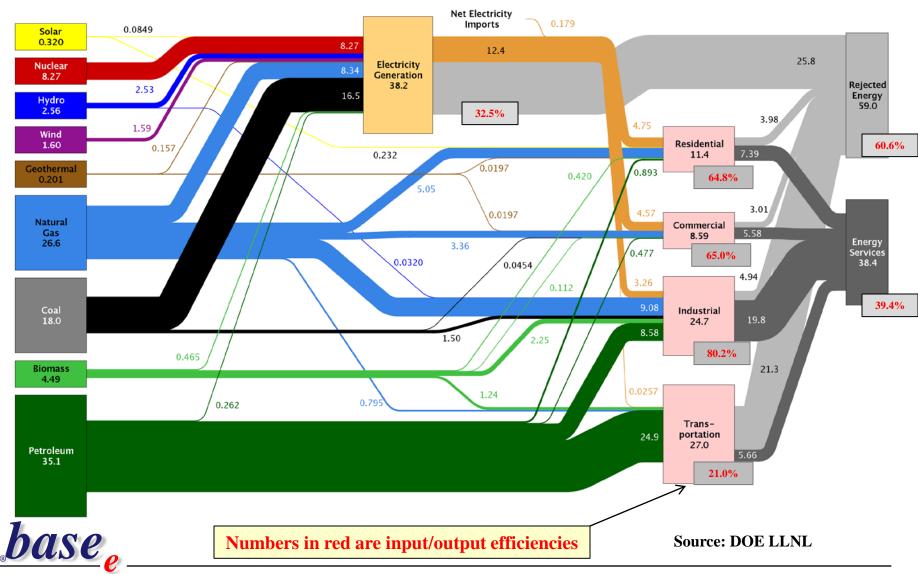
World Energy Consumption Mtoe

	Oil	Natural	Coal	Nuclear	Hydro	Renew -	Total 2014			
Million tonnes oil equivalent	r	Gas		Energy	electric	ables		2014		
US	000 4	695.3	450.4	189.8	50.4	05.0	2298.7	17.8%	U.S.	
US Canada	836.1 103.0	695.3 93.8	453.4 21.2	24.0	<u>59.1</u> 85.7	<u>65.0</u> 4.9	2298.7 332.7	2.6%	- 2.8% Renewa	hla
Mexico	85.2			24.0		4.9 3.7	332.7 191.4	2.6% 1.5%		inte
Total North America	1024.4	77.2 866.3	14.4 488.9	2.2	8.6 153.5	73.6	2822.8	21.8%	– 2.6% Hydro	
	1024.4	000.3	400.9	210.1	100.0	73.0	2022.0	21.0%		
Brazil	142.5	35.7	15.3	3.5	83.6	15.4	296.0	2.3%		
Total S. & Cent. America	326.5	153.1	31.6	4.7	155.4	21.5	692.8	5.4%		
			••				002.0	011/0		
France	76.9	32.3	9.0	98.6	14.2	6.5	237.5	1.8%	Renewables	
Germany	111.5	63.8	77.4	22.0	4.6	31.7	311.0	2.4%		
Italy	56.6	51.1	13.5	-	12.9	14.8	148.9	1.2%	– Germany 10.2	2%
Russian Federation	148.1	368.3	85.2	40.9	39.3	0.1	681.9	5.3%	– Spain 12.0%	
Spain	59.5	23.7	12.0	13.0	8.9	16.0	133.0	1.0%	Spann 12.070	
Turkey	33.8	43.7	35.9	-	9.1	2.8	125.3	1.0%		
Ukraine	10.2	34.6	33.0	20.0	1.9	0.4	100.1	0.8%	Nuclear	
United Kingdom	69.3	60.0	29.5	14.4	1.3	13.2	187.9	1.5%		
Total Europe & Eurasia	858.9	908.7	476.5	266.1	195.7	124.4	2830.3	21.9%	– France 42%	
								\smile		
Iran	93.2	153.2	1.1	1.0	3.4	0.1	252.0	1.9%		
Saudi Arabia	142.0	97.4	0.1	-	-	۸	239.5	1.9%		
Other Middle East	76.0	40.4	0.1	-	1.8	۸	118.3	0.9%		
Total Middle East	393.0	418.6	9.7	1.0	5.2	0.3	827.9	6.4%		
South Africa	29.1	3.7	89.4	3.6	0.3	0.6	126.7	1.0%		
Other Africa	93.6	3.7 27.4	8.2	3.0	24.2	0.8 1.8	120.7	1.0%		
Total Africa		27.4 108.1	8.∠ 98.6	- 3.6	24.2 27.5	1.8 2.9		3.2%		
Total Africa	179.4	100.1	90.0	3.0	27.5	2.9	420.1	3.2%		
Australia	45.5	26.3	43.8	-	3.3	4.1	122.9	1.0%	Asia Pacific	
China	520.3	166.9	1962.4	28.6	240.8	53.1	2972.1	23.0%	Represents	
India	180.7	45.6	360.2	7.8	29.6	13.9	637.8	4.9%	>70% of	
Indonesia	73.9	34.5	60.8	-	3.4	2.2	174.8	1.4%		
Japan	196.8	101.2	126.5	-	19.8	11.6	456.1	3.5%	Coal	
South Korea	108.0	43.0	84.8	35.4	0.8	1.1	273.2	2.1%	Consumption	
Total Asia Pacific	1428.9	610.7	2776.6	82.5	341.6	94.2	5334.6	41.3%	Consumption	
Total World	4211.1	3065.5	3881.8	574.0	879.0	316.9	12928.4	100.0%		
	32.6%	23.7%	30.0%	4.4%	6.8%	2.5%	100.0%			

"Practical Strategies for Emerging Energy Technologies"

base,

53.7% Gas & Coal

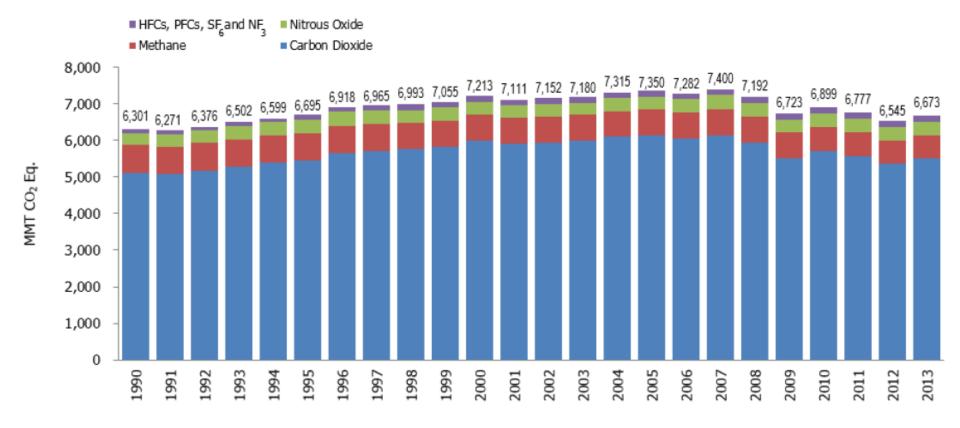

2.5% Renewables

World Total Primary Energy Consumption - Quads

		(Q	uadrillio	n Btu)					
Region/Country	2008	2011	2015	2020	2025	2030	2035	Growth Rate (2008-2035)	
OECD								, ,	
OECD Americas	122.9	121.3	126.1	131	135.9	141.6	147.7	0.70%	
United States	100.1	98.3	102	104.9	108	111	114.2	0.50%	
Canada	14.3	14.3	14.6	15.7	16.4	17.6	18.8	1.00%	
Mexico/Chile	8.5	8.7	9.5	10.4	11.5	13	14.7	2.10%	
OECD Europe	82.2	80.8	83.6	86.9	89.7	91.8	93.8	0.50%	
OECD Asia	39.2	38.7	40.7	42.7	44.2	45.4	46.7	0.70%	
Japan	22.4	21.2	22.2	23.2	23.7	23.7	23.8	0.20%	
South Korea	10	10.4	11.1	11.6	12.4	13.1	13.9	1.20%	
Australia/New Zealand	6.8	7.1	7.4	7.8	8.1	8.5	8.9	1.00%	
Total OECD	244.3	240.7	250.4	260.6	269.8	278.7	288.2	0.60%	
Non-OECD									
Non-OECD Europe and Eurasia	50.5	49.7	51.4	52.3	54	56	58.4	0.50%	
Russia	30.6	30.2	31.1	31.3	32.3	33.7	35.5	0.60%	
Other	19.9	19.5	20.4	21	21.7	22.3	22.9	0.50%	
Non-OECD Asia	137.9	163.6	188.1	215	246.4	274.3	298.8	2.90%	Note ~3
China	86.2	107	124.2	140.6	160.9	177.9	191.4	3.00%	
India	21.1	24.4	27.8	33.1	38.9	44.3	49.2	3.20%	Growt
Other	30.7	32.2	36.2	41.3	46.7	52.1	58.2	2.40%	Rate
Middle East	25.6	28.4	31	33.9	37.3	41.3	45.3	2.10%	
Africa	18.8	20	21.5	23.6	25.9	28.5	31.4	1.90%	
Central and South America	27.7	28.7	31	34.2	38	42.6	47.8	2.00%	
Brazil	12.7	13.8	15.5	17.3	19.9	23.2	26.9	2.80%	
Other	15	14.9	15.6	16.9	18.1	19.5	20.8	1.20%	
Total Non-OECD	260.5	290.4	323.1	358.9	401.7	442.8	481.6	2.30%	Overa
Fotal World	504.7	531.2	573.5	619.5	671.5	721.5	769.8	1.60%	1.6%
									Grow
									Rate

U.S. Energy Consumption 2013 – 97.4 Quads

Where Does CO₂ Come From?


Worldwide CO₂ Emissions (million metric tonnes)

World carbon dioxide emissions by region, IEO2011 Reference case (Million metric tons carbon dioxide)										
Growth Rate										
Region/Country	2005	2008	2011	2015	2020	2025	2030	2035	(2008-2035)	
OECD										
OECD Americas	7079	6926	6665	6773	6924	7169	7431	7772	0.31%	
United States	5996	5838	5601	<u>5680</u>	5777	5938	6108	6311	0.17%	2015
Canada	620	595	570	569	582	608	635	679	0.30%	China 28.1%
Mexico/Chile	463	493	494	524	565	623	688	782	1.76%	
OECD Europe	4400	4345	4097	4115	4147	4156	4198	4257	-0.11%	U.S 17.0%
OECD Asia	2172	2201	2112	2143	2181	2224	2253	2294	0.18%	India 5.4%
Japan	1241	1215	1114	1125	1142	1136	1110	1087	-0.44%	Total 50.5%
South Korea	494	522	539	553	562	597	634	678	1.06%	
Australia/New Zealand	437	464	458	466	477	492	509	528	0.63%	
Total OECD	13651	13472	12873	13031	13252	13549	13882	14323	0.16%	
Non-OECD										
Non-OECD Europe and Eurasia	2782	2832	2787	2803	2767	2782	2863	2964	0.21%	
Russia	1645	1663	1651	1648	1607	1603	1659	1747	0.20%	
Other	1137	1169	1136	1154	1159	1179	1204	1217	0.23%	
Non-OECD Asia	8359	10100	11916	13238	14475	16475	18238	19688	2.90%	
China	5513	6801	8381	9386	10128	11492	12626	13441	3.02%	
India	1182	1462	1633	1802	2056	2398	2728	3036	3.19%	
Other	1665	1838	1901	2050	2291	2585	2884	3211	2.21%	
Middle East	1400	1581	1743	1889	2019	2199	2435	2659	2.16%	
Africa	978	1078	1137	1209	1311	1430	1568	1735	1.93%	
Central and South America	1011	1128	1184	1287	1386	1497	1654	1852	2.04%	
Brazil	365	423	468	528	579	644	739	874	2.95%	> 33.5 (
Other	646	705	716	759	807	853	916	978	1.39%	
Total Non-OECD	14530	16718	18766	20426	21958	24383	26758	28897	2.32%	
				\sim						
Total World	28181	30190	31640	33457	35210	37932	40640	43220	1.44%	

CO₂ Equivalent Emissions – by Gas 1990-2013

Figure ES-1: U.S. Greenhouse Gas Emissions by Gas

Note: Emissions values are presented in CO2 equivalent mass units using IPCC AR4 GWP values.

EPA U.S GHG Emissions

"Practical Strategies for Emerging Energy Technologies"

base

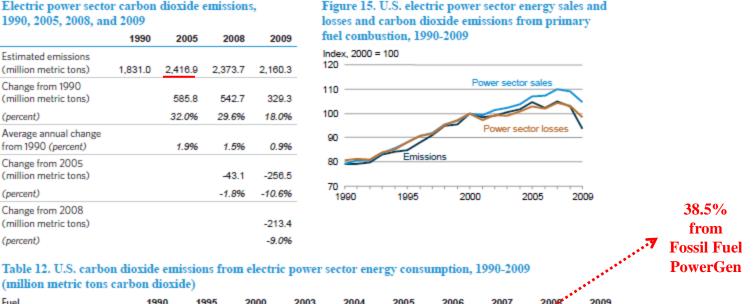
U.S. GHG Gas Emissions & Sinks – CO₂

					_		_
1990	2005		2009	2010	2011	2012	2013
5,123.7	6,134.0		5,500.6	5,704.5	5,568.9	5,358.3	5,505.2
4,740.7	5,747.7		5,197.1	5,367.1	5,231.3	5,026.0	5,157.7
1,820.8	2,400.9		2,145.7	2,258.4	2,157.7	2,022.2	2,039.8
1,493.8	1,887.8		1,720.3	1,732.0	1,711.5	1,700.8	1,718.4
842.5	827.8		727.7	775.7	774.1	784.2	817.3
338.3	357.8		336.4	334.7	327.2	283.1	329.6
217.4	223.5		223.5	220.2	221.0	197.1	220.7
27.9	49.9		43.5	46.2	39.8	38.6	32.0
117.7	138.9		106.0	114.6	108.4	104.9	119.8
99.8	66.7		43.0	55.7	60.0	54.3	52.3
37.6	30.0		32.2	32.3	35.6	34.8	37.8
33.3	45.9		29.4	31.3	32.0	35.1	36.1
21.6	28.1		23.7	27.4	26.4	26.5	26.5
11.7	14.6		11.4	13.4	14.0	13.7	14.1
13.0	9.2		8.5	9.2	9.3	9.4	10.2
8.0	12.5		11.3	11.0	10.5	10.4	10.1
4.4	4.9		4.7	4.2	4.5	5.1	6.0
4.7	4.3		3.7	4.8	3.9	5.8	5.9
3.8	3.7		3.4	4.7	4.0	4.4	4.7
	5,123.7 4,740.7 1,820.8 1,493.8 842.5 338.3 217.4 27.9 117.7 99.8 37.6 33.3 21.6 11.7 13.0 8.0 4.4 4.7	5,123.7 6,134.0 4,740.7 5,747.7 1,820.8 2,400.9 1,493.8 1,887.8 842.5 827.8 338.3 357.8 217.4 223.5 27.9 49.9 117.7 138.9 99.8 66.7 37.6 30.0 33.3 45.9 21.6 28.1 11.7 14.6 13.0 9.2 8.0 12.5 4.4 4.9 4.7 4.3	5,123.7 6,134.0 4,740.7 5,747.7 1,820.8 2,400.9 1,493.8 1,887.8 842.5 827.8 338.3 357.8 217.4 223.5 27.9 49.9 117.7 138.9 99.8 66.7 37.6 30.0 33.3 45.9 21.6 28.1 11.7 14.6 13.0 9.2 8.0 12.5 4.4 4.9 4.7 4.3	5,123.7 $6,134.0$ $5,500.6$ $4,740.7$ $5,747.7$ $5,197.1$ $1,820.8$ $2,400.9$ $2,145.7$ $1,493.8$ $1,887.8$ $1,720.3$ 842.5 827.8 727.7 338.3 357.8 336.4 217.4 223.5 223.5 27.9 49.9 43.5 117.7 138.9 106.0 99.8 66.7 43.0 37.6 30.0 32.2 33.3 45.9 29.4 21.6 28.1 23.7 11.7 14.6 11.4 13.0 9.2 8.5 8.0 12.5 11.3 4.4 4.9 4.7 4.7 4.3 3.7	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $1,820.8$ $2,400.9$ $2.145.7$ $2.258.4$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ 842.5 827.8 727.7 775.7 338.3 357.8 336.4 334.7 217.4 223.5 223.5 220.2 27.9 49.9 43.5 46.2 117.7 138.9 106.0 114.6 99.8 66.7 43.0 55.7 37.6 30.0 32.2 32.3 33.3 45.9 29.4 31.3 21.6 28.1 23.7 27.4 11.7 14.6 11.4 13.4 13.0 9.2 8.5 9.2 8.0 12.5 11.3 11.0 4.4 4.9 4.7 4.2 4.7 4.3 3.7 4.8	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $5,568.9$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $5,231.3$ $1,820.8$ $2,400.9$ $2.145.7$ $2,258.4$ $2.157.7$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ $1,711.5$ 842.5 827.8 727.7 775.7 774.1 338.3 357.8 336.4 334.7 327.2 217.4 223.5 223.5 220.2 221.0 27.9 49.9 43.5 46.2 39.8 117.7 138.9 106.0 114.6 108.4 99.8 66.7 43.0 55.7 60.0 37.6 30.0 32.2 32.3 35.6 33.3 45.9 29.4 31.3 32.0 21.6 28.1 23.7 27.4 26.4 11.7 14.6 11.4 13.4 14.0 13.0 9.2 8.5 9.2 9.3 8.0 12.5 11.3 11.0 10.5 4.4 4.9 4.7 4.2 4.5	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $5,568.9$ $5,358.3$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $5,231.3$ $5,026.0$ $1,820.8$ $2,400.9$ $2,145.7$ $2,258.4$ $2,157.7$ $2,022.2$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ $1,711.5$ $1,700.8$ 842.5 827.8 727.7 775.7 774.1 784.2 338.3 357.8 336.4 334.7 327.2 283.1 217.4 223.5 223.5 220.2 221.0 197.1 27.9 49.9 43.5 46.2 39.8 38.6 117.7 138.9 106.0 114.6 108.4 104.9 99.8 66.7 43.0 55.7 60.0 54.3 33.3 45.9 29.4 31.3 32.0 35.1 21.6 28.1 23.7 27.4 26.4 26.5 11.7 14.6 11.4 13.4 14.0 13.7 13.0 9.2 8.5 9.2 9.3 9.4 8.0 12.5 11.3 11.0 10.5 10.4 4.4 4.9 4.7 4.2 4.5 5.1 4.7 4.3 3.7 4.8 3.9 5.8

<u>base</u>

EPA GHG Inventory 1990-2013 Table ES-2 (page 1)

U.S. GHG Gas Emissions & Sinks – CO₂


Other Process Uses of Carbonates	4.9	6.3	7.6	9.6	9.3	8.0	4.4	
Urea Fertilization	2.4	3.5	3.6	3.8	4.1	4.2	4.0	
Aluminum Production	6.8	4.1	3.0	2.7	3.3	3.4	3.3	
Soda Ash Production and								
Consumption	2.7	2.9	2.5	2.6	2.6	2.7	2.7	
Ferroalloy Production	2.2	1.4	1.5	1.7	1.7	1.9	1.8	
Titanium Dioxide Production	1.2	1.8	1.6	1.8	1.7	1.5	1.6	
Zinc Production	0.6	1.0	0.9	1.2	1.3	1.5	1.4	
Phosphoric Acid Production	1.6	1.4	1.0	1.1	1.2	1.1	1.2	
Glass Production	1.5	1.9	1.0	1.5	1.3	1.2	1.2	
Carbon Dioxide Consumption	1.5	1.4	1.8	1.2	0.8	0.8	0.9	
Peatlands Remaining Peatlands	1.1	1.1	1.0	1.0	0.9	0.8	0.8	
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5	
Silicon Carbide Production and								
Consumption	0.4	0.2	0.1	0.2	0.2	0.2	0.2	
Magnesium Production and								
Processing	+	+	+	+	+	+	+	
Land Use, Land-Use Change, and	(775.0)	(011.0)	(0.7.0.0)	(0.7.1	(0.0.7.0)	(222.4)	(001.5)	
Forestry (Sink) ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)	
Wood Biomass and Ethanol	210 4	220.0	250.5	265 1	260 1	2677	202.2	
Consumption ^b	219.4	229.8	250.5	265.1	268.1	267.7	283.3	
International Bunker Fuels ^c	103.5	113.1	106.4	117.0	111.7	105.8	99.8	

EPA GHG Inventory 1990-2013 Table ES-2 (page 2)

"Practical Strategies for Emerging Energy Technologies"

base

CO₂ Emission from Electric Power

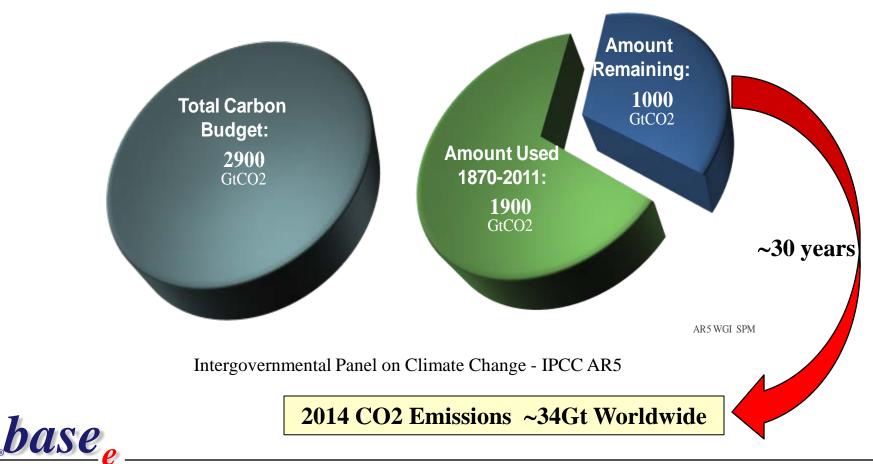
(million metric tons c	агооп шөх	ide)								
Fuel	1990	1995	2000	2003	2004	2005	2006	2007	2008	2009
Petroleum										
Residual fuel oil	91.6	44.6	68.6	68.5	69.3	69.1	28.4	31.3	18.9	14.3
Distillate fuel oil	7.1	7.9	12.8	11.8	8.1	8.4	5.4	6.5	5.3	5.1
Petroleum coke	3.1	8.2	10.1	17.8	22.7	24.9	21.8	17.5	15.7	14.2
Petroleum subtotal	101.8	60.7	91.5	98.1	100.1	102.3	55.6	55.3	40.0	33.6
Coal	1,547.6	1,660.7	1,927.4	1,931.0	1,943.1	1,983.8	1,953.7	1,987.3	1,959.4	1,742.2
Natural gas	175.5	228.2	280.9	278.3	296.8	319.1	338.2	371.7	362.3	372.6
Municipal solid waste ^a	5.8	10.0	10.1	11.4	11.2	11.2	11.5	11.3	11.0	11.6
Geothermal	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Total	1,831.0	1,960.1	2,310.2	2,319.2	2,351.5	2,416.9	2,359.5	2,425.9	2,373.7	2,160.3

2,302.9 total in 2005

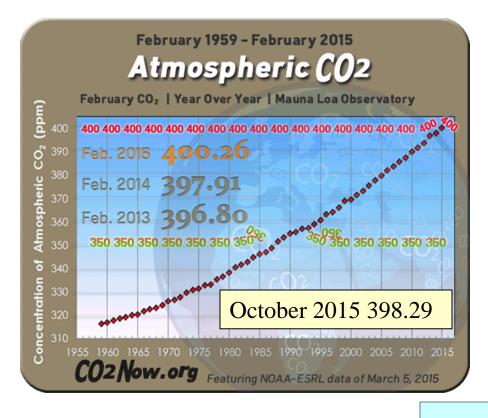
^aEmissions from nonbiogenic sources, including fuels derived from recycled tires.

Notes: Emissions for total fuel consumption are allocated to end-use sectors in proportion to electricity sales. Totals may not equal sum of components due to independent rounding.

"Practical Strategies for Emerging Energy Technologies"


2005 @ 2416 Mt is benchmark for CPP (until EPA changes it again)

What's Our Target?



The CO₂ Budget

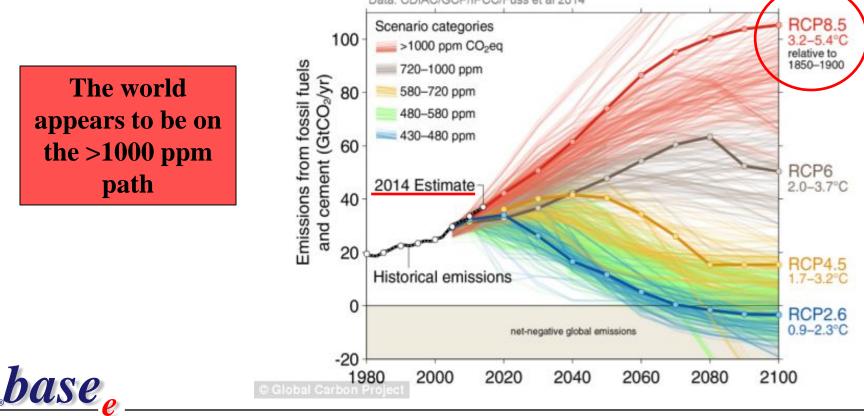
65% of our carbon budget compatible with a 2°C goal already used

What does 450 ppm(v) CO₂ Mean?

Gas	Ratio compared	to Dry Air (%)	Molecular Mass - <i>M -</i>	Chemical Symbol
	By volume	By weight	(kg/kmol)	Symbol
Oxygen	20.9500	23.2	32.00	O ₂
Nitrogen	78.0900	75.47	28.02	N_2
Carbon Dioxide	0.0300	0.046	44.01	CO ₂
Hydrogen	0.0001	~ 0	2.02	H_2
Argon	0.9330	1.28	39.94	Ar
Neon	0.0018	0.0012	20.18	Ne
Helium	0.0005	0.00007	4.00	He
Krypton	0.0001	0.0003	83.80	Kr
Xenon	9 10 ⁻⁶	0.00004	131.29	Xe

Standard assumptions on the chemical composition of Air

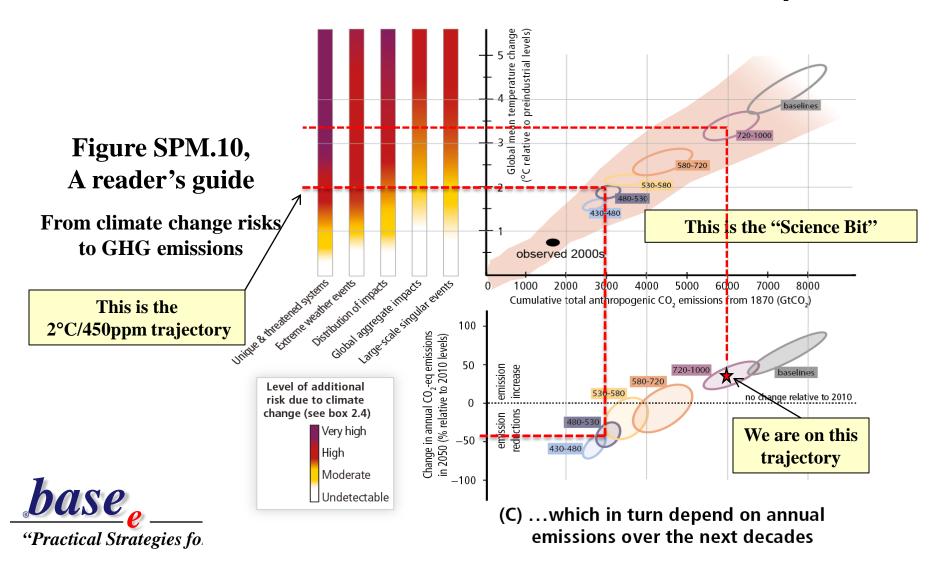
0.0300% = 300 ppm(v)

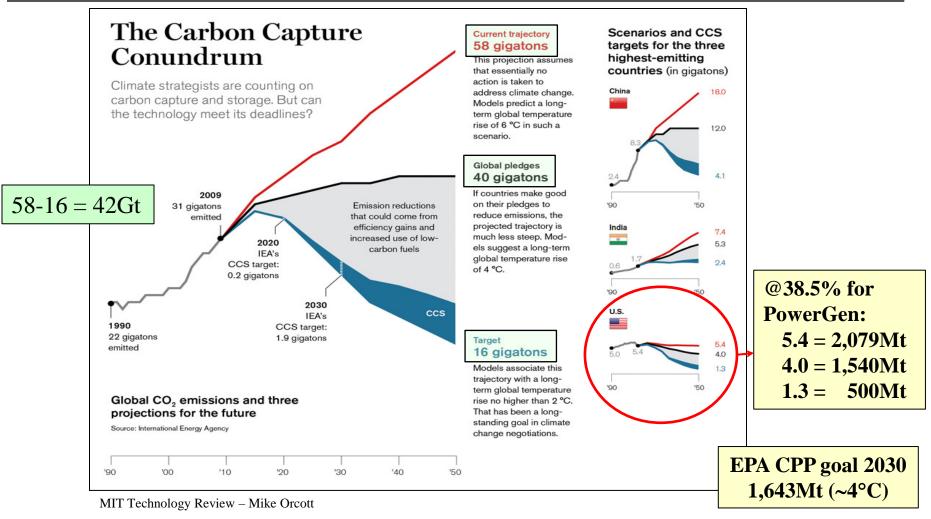

Value March 5, 2015 at Mauna Loa was 400.26 ppm(v)

<u>base</u>

"Practical Strategies for Emerging Energy Technologies"

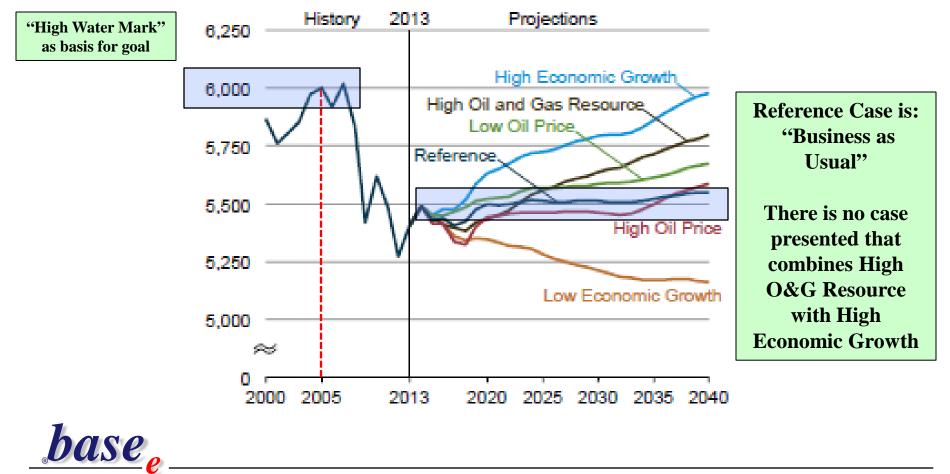
"Busted"


- The world pumped 36.1 Gt of carbon dioxide into the air last year by burning coal, oil and gas.
- That is 0.706 Gt or 2.3 per cent more than the previous year, despite increasingly urgent warnings over the need to curb greenhouse gases


"Practical Strategies for Emerging Energy Technologies"

This is the "Science Bit"

(A) Risks from climate change... (B) ...depend on cumulative CO₂ emissions...


The Carbon Conundrum

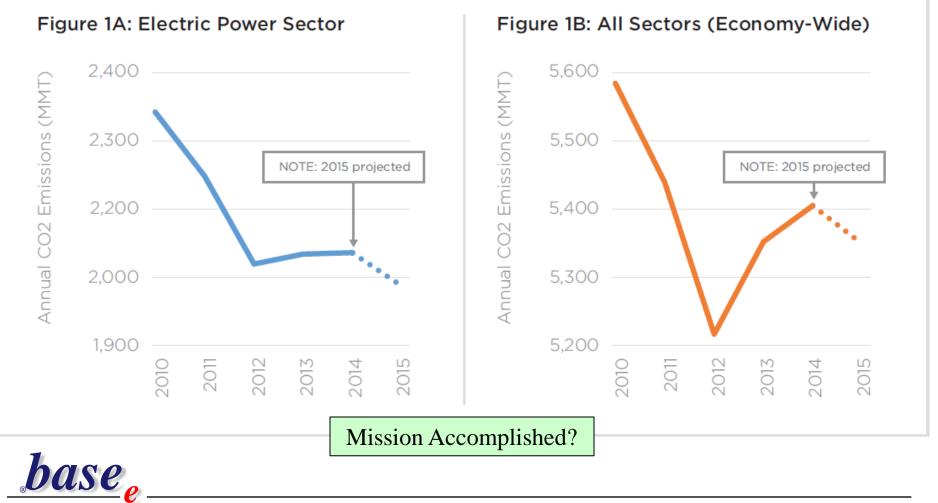
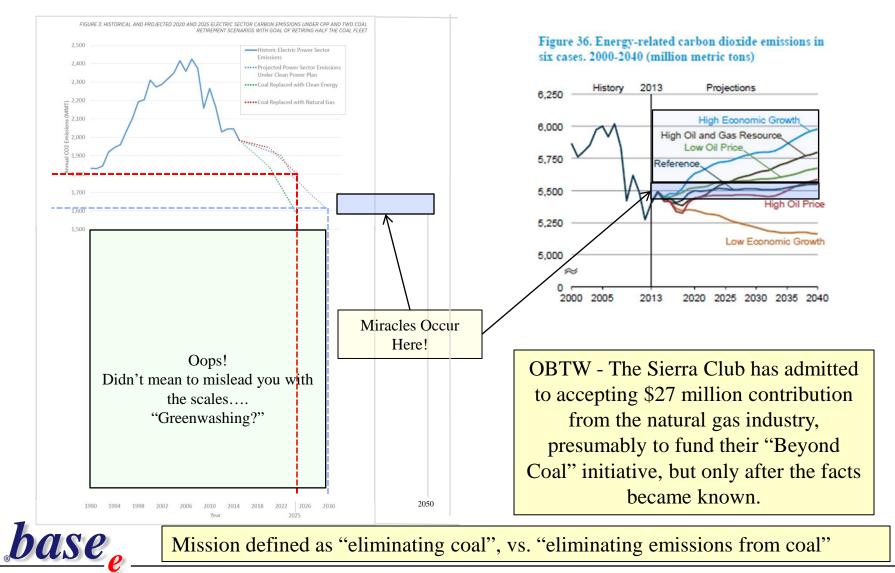
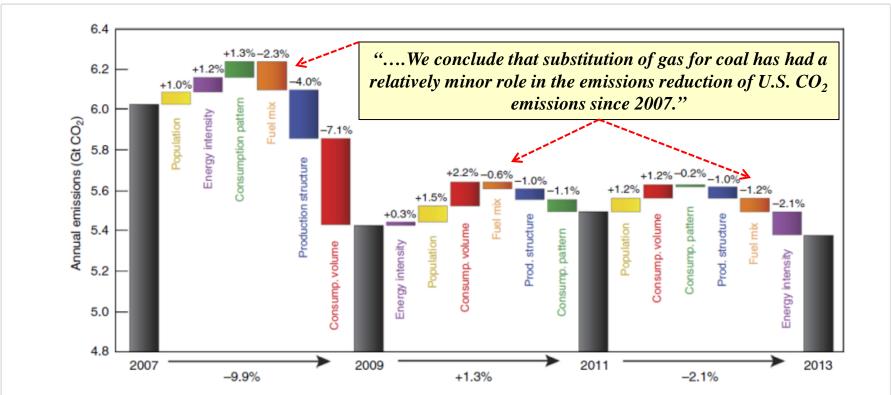

EIA Energy Related CO₂ Forecast

Figure 36. Energy-related carbon dioxide emissions in six cases. 2000-2040 (million metric tons)



Sierra Club Fact Sheet – November 3, 2015


FIGURE 1: CARBON EMISSIONS IN THE ELECTRIC SECTOR AND ECONOMY-WIDE SINCE 2010

Sierra Club Fact Sheet – November 3, 2015 (Re-scaled)

Coal-to-Gas Shift – nature.com

Figure 3 | Contributions of different factors to the decline in US CO₂ emissions 2007-2009 and 2009-2011 and 2011-2013. Between 2007 and 2009, decreases in the volume of goods and services consumed during the economic recession (red) was the primary contributor to the nearly 10% drop in emissions. But between 2009 and 2011, consumption (consump.) volume rebounded, population grew and the energy intensity of output increased, driving up emissions by 1.3% against modest decreases in the carbon intensity of the fuel mix and shifts in production structure and consumption patterns. Between 2011 and 2013, increases in population and consumption volume again pushed emissions upward, but overall emissions decreased by 2.1% due to further changes in production (prod.) structure, consumption patterns, decreasing use of coal and decreases in energy intensity of output. Not shown here, emissions increased by 1.7% between 2012 and 2013, driven primarily by increases in consumption volume.

"The new EPA Clean Power Plan is largely built on fuel switching and renewables deployment"

"Practical Strategies for Emerging Energy Technologies" http://www.nature.com/ncomms/2015/150721/ncomms8714/full/ncomms8714.html

What Can We Do?

• Stop producing or produce less CO₂

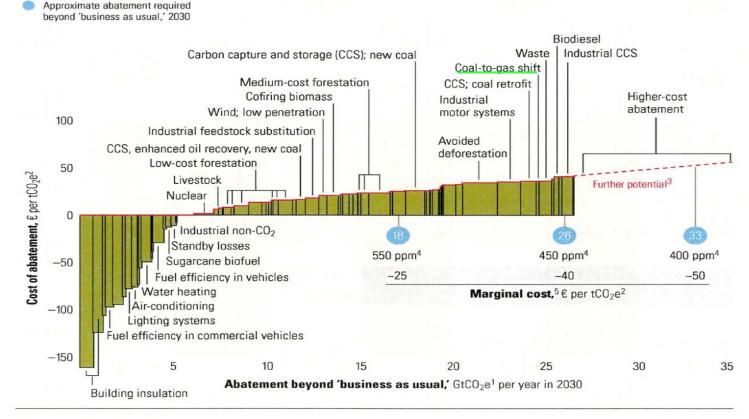
- "Switch to Renewables"
- Fuel Switching

• Use the CO₂

- As a Fuel
- Chemical Feedstock
- Biomass Nutrient
- Carbon(ate) Based Product
- Enhanced Oil Recovery (EOR)

• Put the CO₂ back

- Carbon Capture & Storage


• Adapt to its effects

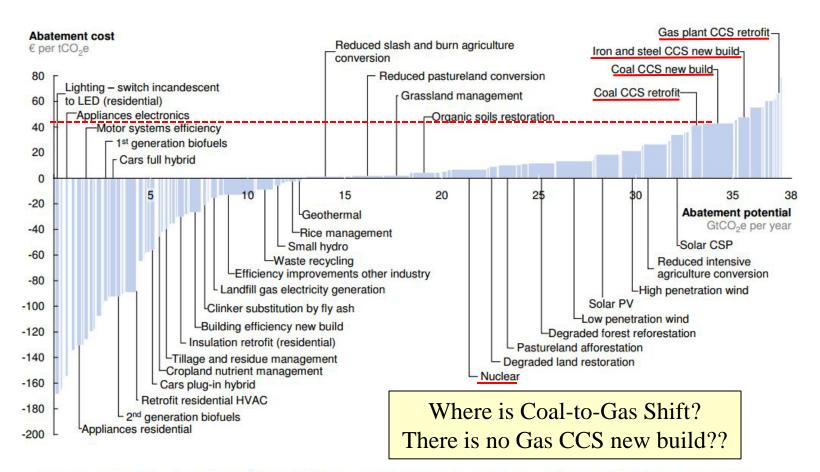
- Build seawalls
- Harden vulnerable assets

McKinsey CO₂ Cost Curve V1.0

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

¹GtCO₂e = gigaton of carbon dioxide equivalent; "business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

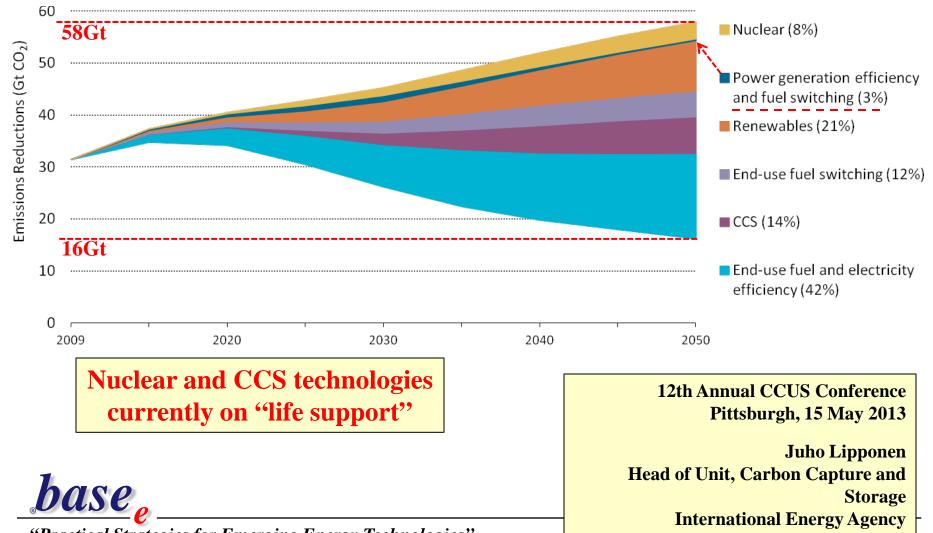
 $^{2}tCO_{2}e = ton of carbon dioxide equivalent.$


³Measures costing more than €40 a ton were not the focus of this study.

 4 Atmospheric concentration of all greenhouse gases recalculated into CO₂ equivalents; ppm = parts per million.

⁵Marginal cost of avoiding emissions of 1 ton of CO₂ equivalents in each abatement demand scenario.

McKinsey Global GHG Cost Curve V2.1

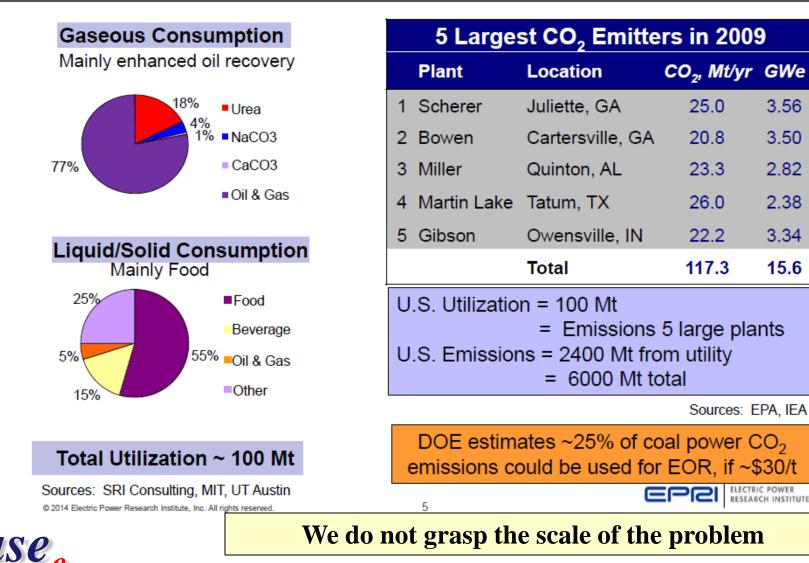


Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €80 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.1

<u>base</u>

"Practical Strategies for Emerging Energy Technologies"

IEA Vision May 2013



"Practical Strategies for Emerging Energy Technologies"

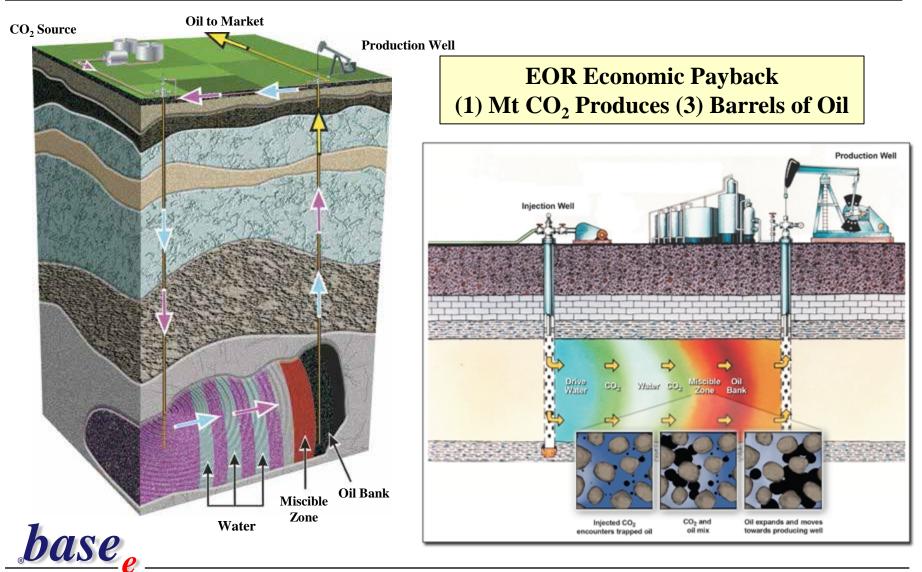
OK....Let's Use the Stuff!

Annual U.S. CO₂ Utilization vs. Emissions

3.56

3.50

2.82


2.38

3.34

15.6

ELECTRIC POWER RESEARCH INSTITUTE

Enhanced Oil Recovery

"Practical Strategies for Emerging Energy Technologies"

Enhanced Oil Recovery

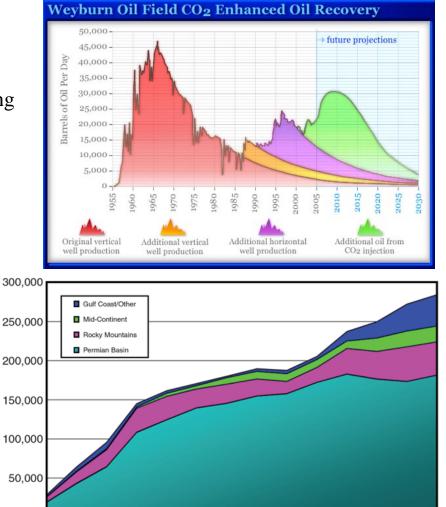
- Enhance Oil Recovery (EOR)

- Near term application
- Recover up to 15% more oil from existing reservoirs
- Extend useful life by 25 years
- Substitute for natural gas re-injection
- \$800 million annual market potential

- Enhanced Coal Bed Methane

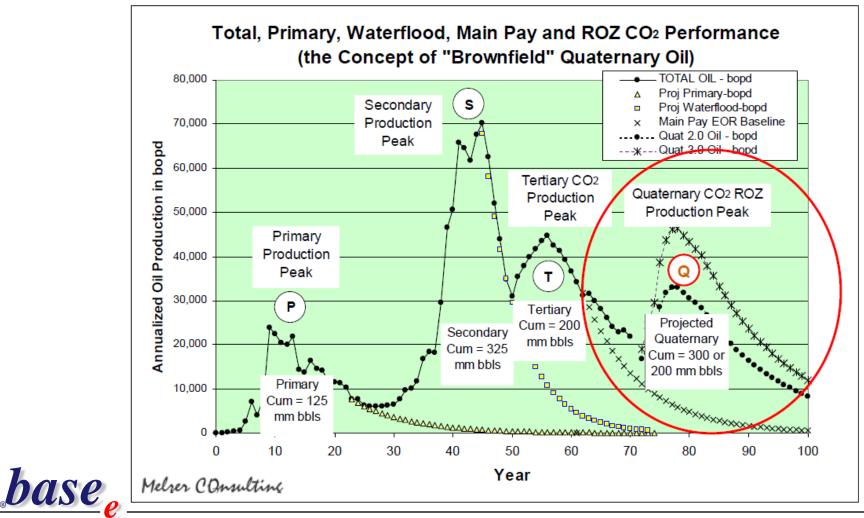
 R&D efforts focused on similar use and effects

– Oil Shale & Tar Sands

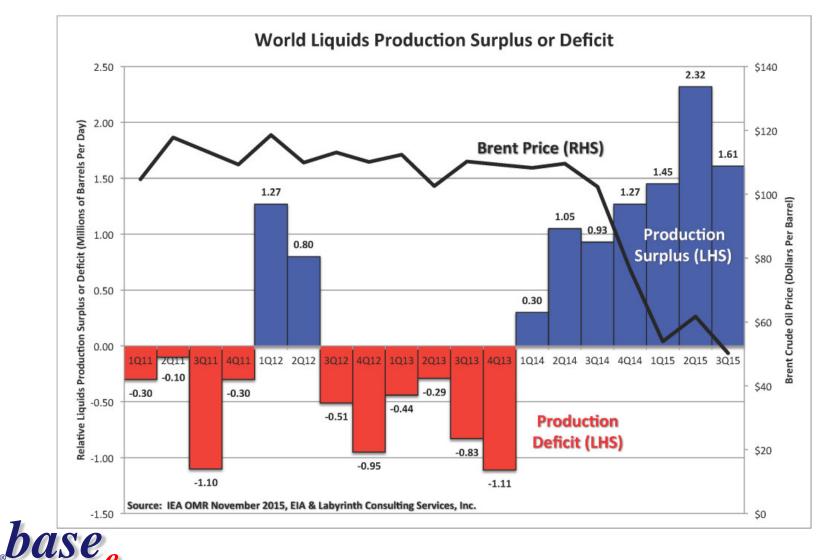

- 1 trillion bbl oil equivalent
- In-situ methods under investigation

Enhanced Oil Recovery (bbl/d)

- Potential CO₂ use
 - Stimulate production
 - Moderate in-situ combustion

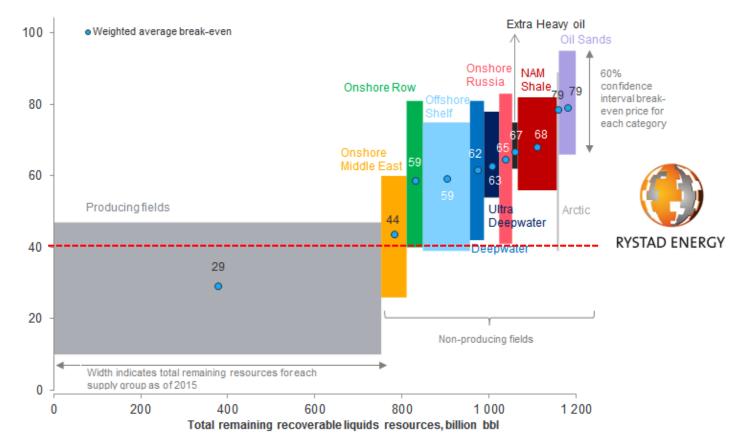

"Practical Strategies for Emerging Energy Technologies"

0 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year


Residual Oil Zones - ROZ

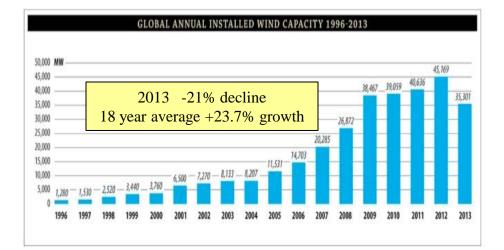
'Quaternary' Oil at the Seminole Field (Given Access to Needed CO₂ Supplies)

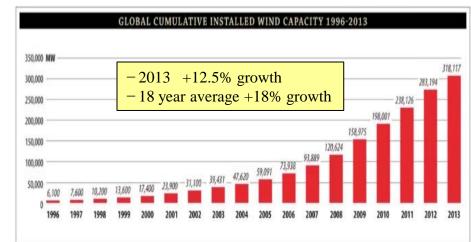
"Practical Strategies for Emerging Energy Technologies"


Oil Price

Global Liquids Cost Curve

Real Brent USD/bbl


*The break-even price is the Brent oil price at which NPV equals zero using a real discount rate of 7.5%. Resources are split into two life cycle categories: producing and non-producing (under development and discoveries). The latter is further split into several supply segment groups. The curve is made up of more than 20,000 unique assets based on each asset's break-even price and remaining liquids resources in 2015.


Renewables

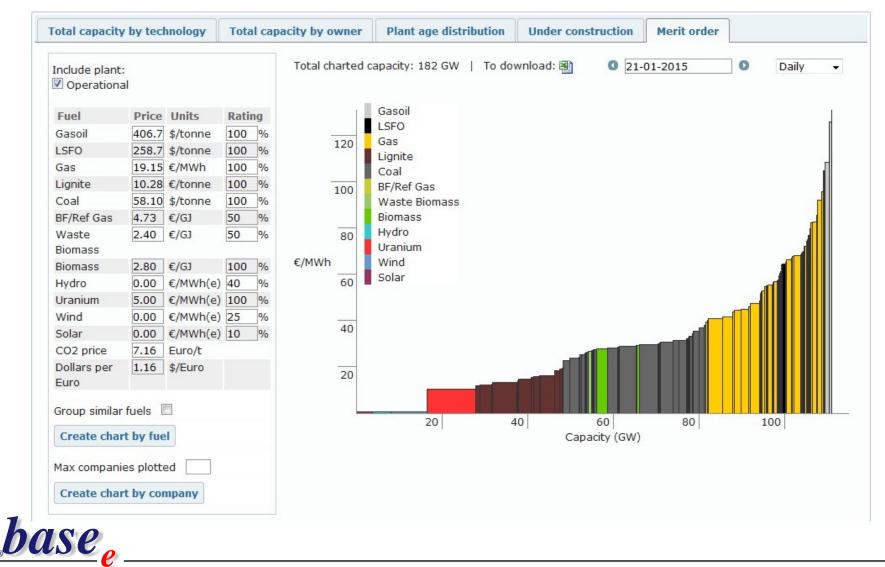
Wind Installed Capacity & Load Factors (2012)

Average Load Factor is 21.5% – High 28.3% - Denmark 26.8% - USA 17.9% - China – Low 16.8% - Germany

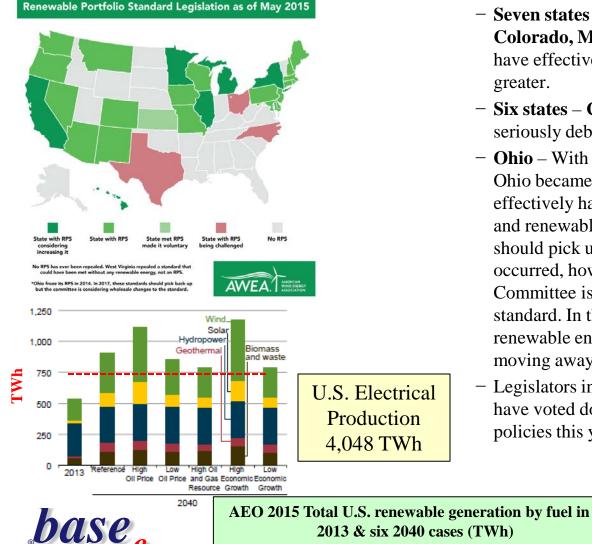
Top windpower electricity producing countries in 2012 (TWh)

Country	Windpower Production	% of World Total	Nameplate GW	Nameplate TWh	Load Factor
United States	140.9	26.40%	60.0	526	26.8%
China	118.1	22.10%	75.3	660	17.9%
Spain	49.1	9.20%	22.8	200	24.6%
Germany	46.0	8.60%	31.3	274	16.8%
India	30.0	5.60%	18.4	161	18.6%
United Kingdom	19.6	3.70%	8.4	74	26.6%
France	14.9	2.80%	7.6	67	22.4%
Italy	13.4	2.00%	8.1	71	18.9%
Canada	11.8	2.20%	6.2	54	21.7%
Denmark	10.3	1.90%	4.2	36	28.3%
Rest of World	80.2	15.00%	40.9	358	22.4%
World Total	534.3	100.00%	283.1	2480	21.5%

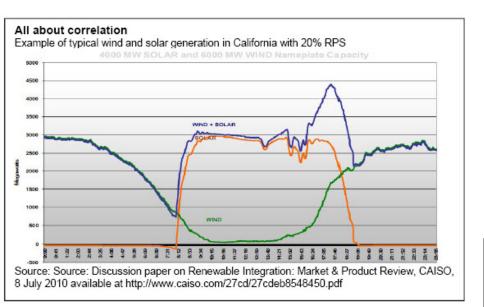
Source: Global Wind Report – Annual Market Update 2014, GWEC

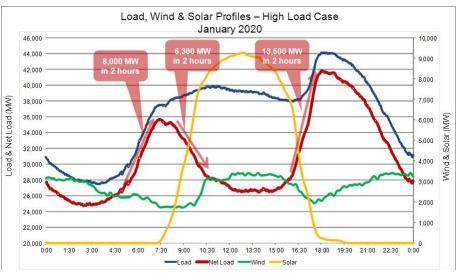

Production Tax Credit - PTC

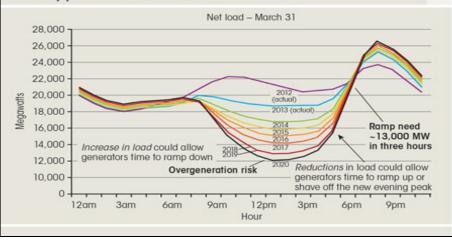
- In December 2014, The Tax Increase Prevention Act of 2014 extended the expiration date for this tax credit to December 31, 2014.
- Projects that are not under construction prior to January 1, 2015, are ineligible for this credit.
- In March 2015, IRS Notice 2015-25 extended the Continuous Construction Test and Continuous Efforts Test (used to determine if a project commencing construction before the end of 2014 is eligible for the PTC) by 1 year to January 1, 2017.
- Generally applies to first 10 years of operation


Resource Type	Credit Amount
Wind	\$0.023/kWh
Closed-Loop Biomass	\$0.023/kWh
Geothermal Energy	\$0.023/kWh
Open-Loop Biomass	\$0.011/kWh
Landfill Gas	\$0.011/kWh
Municipal Solid Waste	\$0.011/kWh
Qualified Hydroelectric	\$0.011/kWh
Marine and Hydrokinetic	\$0.011/kWh

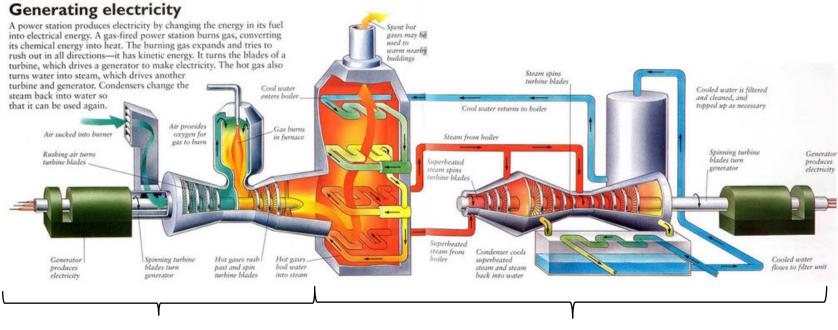
Economic Merit Order Dispatch




Renewable Portfolio Standards


- Seven states Hawaii, California, Nevada,
 Colorado, Minnesota, Connecticut, and Oregon –
 have effective RPS requirements of 25 percent or
 greater.
- Six states CA, MI, NY, MN, IL and VT are seriously debating an increase in their RPS this year.
- Ohio With the signing of Senate Bill 310 in 2014, Ohio became the only state to "freeze" its RPS, effectively halting the state's mandates for efficiency and renewables until 2017. In 2017, these standards should pick up where they left off when the freeze occurred, however an Energy Mandates Study Committee is reviewing wholesale changes to the standard. In this context of policy uncertainty, renewable energy employment and investment is moving away, to more welcoming states.
- Legislators in four states (CO, MT, CT, and NH) have voted down proposals to diminish or repeal RPS policies this year. Source: American Wind Energy Association (AWEA)

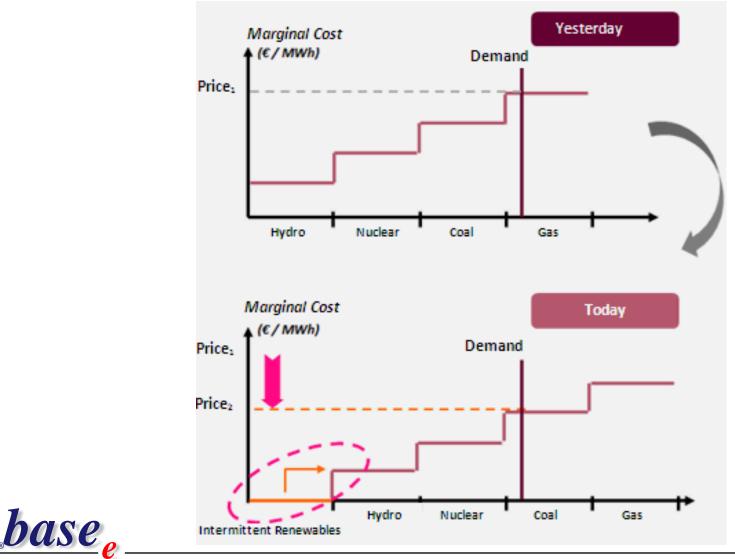
Integrating Renewables "Dealing with The Duck"


California's Future Load Shape and Opportunities for DR

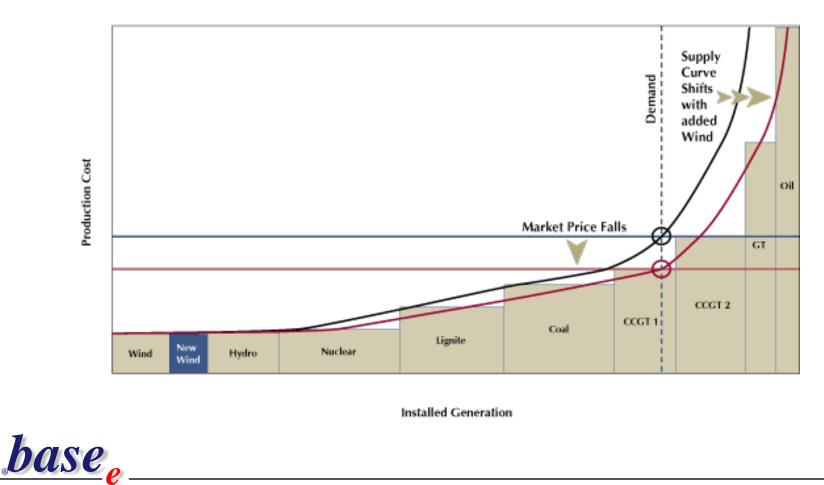
2


Natural Gas Combined Cycle - NGCC

Simples Cycle Gas Turbine Section 40% LHV Efficiency 1100 lb-CO₂/MWh Combined Cycle "Adder" 60% LHV Efficiency 800 lb-CO2/MWh

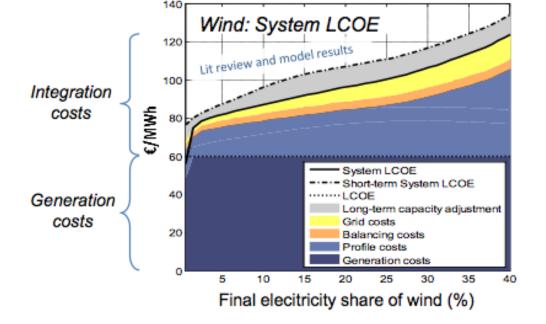


Gas Turbine Start Sequence



"Practical Strategies for Emerging Energy Technologies"

Impact of Intermittent Renewables on Merit Order


Shift in Supply Cost Curve with Renewables

Wind Integration Costs

- -Integration includes:
 - Fluctuating output profile costs
 - Output uncertainties balancing costs
 - Grid costs

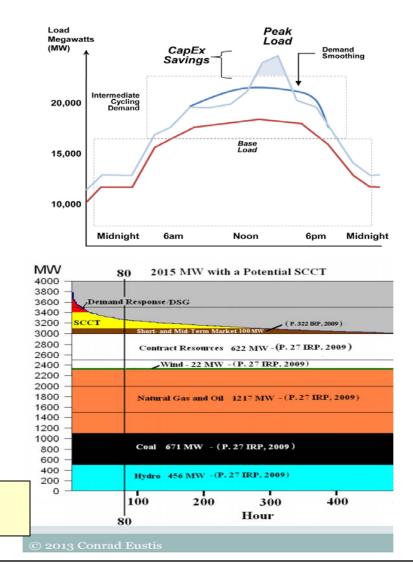
At higher penetration, integration costs for wind exceed generation costs.

Source: System LCOE: What are the costs of variable renewables? Falko Ueckerdt, Lion Hirth, Gunnar Luderer, Ottmar Edenhofer Paris, June 20, 2013 32th International Energy Workshop

As presented by John Thompson Clean Air Task Force CCS – Pittsburgh 2104

The German Experience

- The German government established a feed-in tariff (FIT) incentive system, which guarantees long-term fixed tariffs per unit of renewable power produced
 - Germany underestimated the ultimate cost of the FIT, which to date is \$412 billion, including guaranteed and grated rates that have not yet been paid
 - By 2022, the estimated cost of the FIT program will reach \$884 billion and the country will pay \$31.1 billion in 2014 alone.
- Though the FIT program has succeeded in bringing a large amount of renewables onto the grid in a short amount of time consumers have suffered as a result
 - Electricity prices in Germany have doubled from \$.18/kWh in 2000 to \$.38/kWh in 2013.
 - Wholesale prices have dropped from about 121-128/MWh to 50/MWh in 2013
- The rapid decrease in baseload power and increase in intermittent sources is causing more issues for the grid and expense for the government
 - Grid interventions have increased significantly as operators have to intervene and switch off or start plants that are not programmed to run following market-based dispatching. It is higher amounts of renewables with low full load hours relative to the total portfolio of power production that creates greater variability and strains on the grid.
- "This has created a large amount of load and margin destruction for utilities that built and financed [fossil] plants," which in turn caused many plants to shutter or require additional subsidies to stay online
- As more renewables are introduced Germany must
 - Invest in energy storage technologies
 - Invest in expanding grid infrastructure to reach onshore and offshore wind projects
- These projects are estimated to cost around \$52 billion over the next 10 years.



Source: Finadvice July 2014

Demand Response


- DR as changes (usually reductions) in electricity usage by end-use customers from their normal consumption patterns.
- They are in response to changes in the price of electricity or to direct incentives, typically at times of high wholesale market prices or when system reliability is jeopardized.
- An important distinction for DR is that it must be dispatchable by a utility or system operator, or be initiated by a customer in response to a non-fixed price signal.
- Thus, static time-of-use rates and scheduled thermal energy storage are not typically considered to be DR;
- Critical peak pricing-where the highest price tier is only in effect periodically as called by the utility or operator-is characterized as DR.

Demand Response is an important component of "Smart Grid"

Energy Imbalance Market - EIM

- ISO advanced market systems automatically balance supply and demand for electricity every 15-minutes, dispatching the least-cost resources every 5-minutes.
- Voluntary energy imbalance market service
 became available in November 2014 as a way to
 share reserves and integrate renewable resources
 across a larger geographic region--reliably and
 efficiently.

- Benefits of EIM

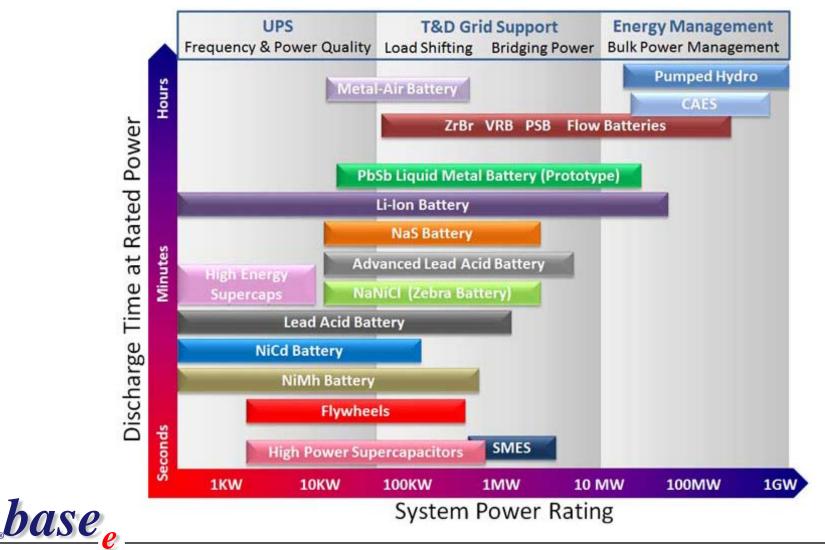
- Efficiency Automated dispatch to balance load and generation is more efficient than manual dispatch
- A wider portfolio of resources to maintain system balance could reduce the costs of energy and capacity
- Improved situational awareness and real-time visibility of transmission constraints, and dispatches resources to reduce and avoid congestion issues. Captures the benefits of geographical diversity of load and resources

Net Metering

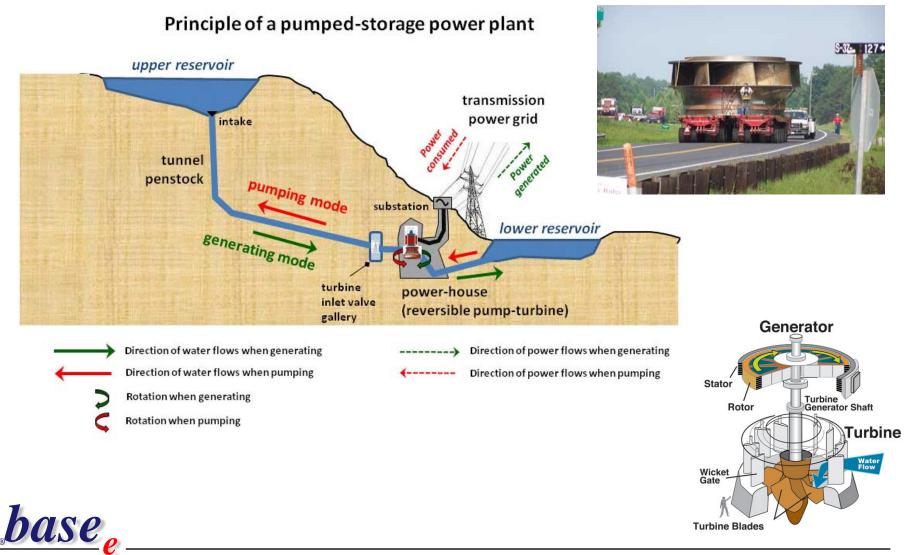
- Net Metering is a service to an electric consumer under which electric energy generated by that electric consumer from an eligible on-site generating facility and delivered to the local distribution facilities may be used to offset electric energy provided by the electric utility to the electric consumer during the applicable billing period.
- Net metering policies can vary significantly by country and by state or province
- Net metering can be implemented solely as an accounting procedure, and requires no special metering, or even any prior arrangement or notification
- Unlike a feed-in-tariff (FIT), which requires two meters, net metering uses a single, bi-directional meter and can measure current flowing in two directions.

-With one meter (net metering), the user/generator receives retail price for any electricity generated

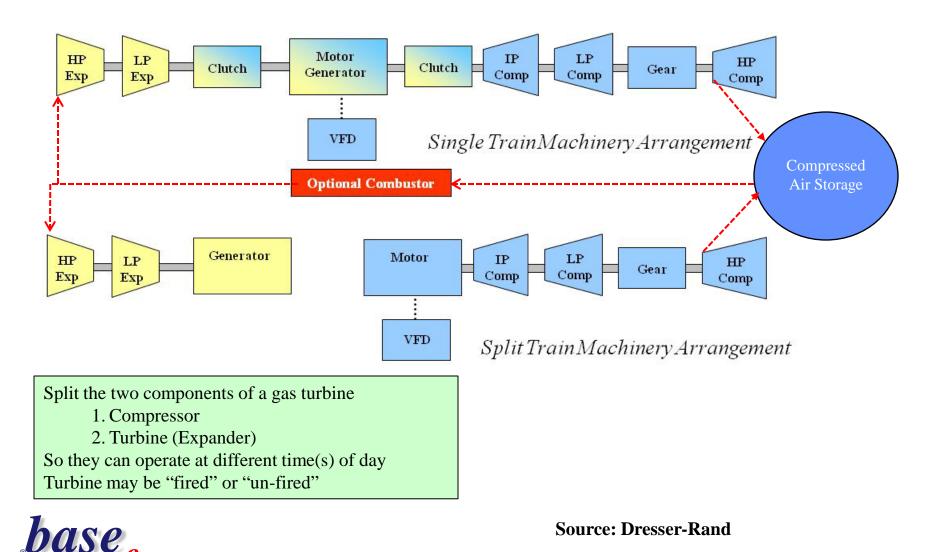
-With two meters (FIT), the user/generator receives wholesale price for any electricity generated


Time of Day Rates Encourage Customer DR

	Summer				
	On-Peak	Mid-Peak	Off-Peak	Total	
Annual Operating Hours	650	975	2015	3640	
Electric Demand Charge - \$/kW/month	16.50	2.45	3.30	5.43	
Electric Rate - \$/kWh	0.1445	0.0680	0.0430	0.0678	
Demand Charge - \$/kWh	0.1269	0.0126	0.0082	0.0306	
Average Electric Rate - \$/kWh	0.2714	0.0806	0.0512	0.0984	
Months of Operation-Summer 5]				
	Winter		0" -	-	1
	On-Peak	Mid-Peak	Off-Peak	Total	-
Annual Operating Hours	0	1972	3124	5096	4
Electric Demand Charge - \$/kW/month	0.00	0.00	3.30	2.02	
Electric Rate - \$/kWh	0.0000	0.0800	0.0460	0.0592	
Demand Charge - \$/kWh	0.0000	0.0000	0.0074	0.0045	-
Average Electric Rate - \$/kWh	0.0000	0.0800	0.0534	0.0637	1
Months of Operation-Winter 7]				
	Total				
	On-Peak	Mid-Peak	Off-Peak	Total	
Annual Operating Hours	650	2947	5139	8736	
Electric Demand Charge - \$/kW/month	16.50	0.81	3.30	3.44	
Electric Rate - \$/kWh	0.1445	0.0760	0.0448	0.0628	
Demand Charge - \$/kWh	0.1269	0.0042	0.0077	0.0154	
Average Electric Rate - \$/kWh	0.2714	0.0802	0.0525	0.0781	
Months of Operation-Total 12	1.				
	J [Resour	ce Dispa	atch Un	der User Control


"Practical Strategies for Emerging Energy Technologies"

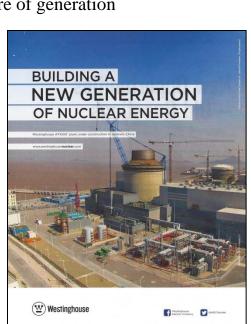
base

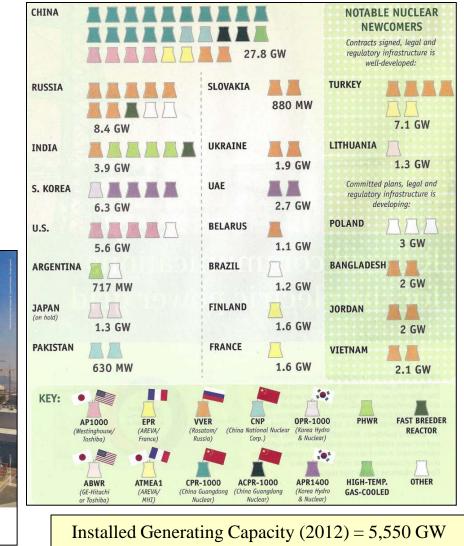

Energy Storage Technologies

Pumped Hydro Storage

Compressed Air Energy Storage (CAES)

Fuel Switching




"The Big Picture: Next-Gen Nuclear"

- Compliments of Power magazine April 2014
- 72 mostly advanced nuclear reactions under construction
- A total of 68GW (12% of installed base)
- China represents 40% of the total
- France will cap nuclear capacity at the current 63.2GW, forcing closures w/capacity additions
 - Currently at 75% share of generation
 - Goal is 50% by 2025

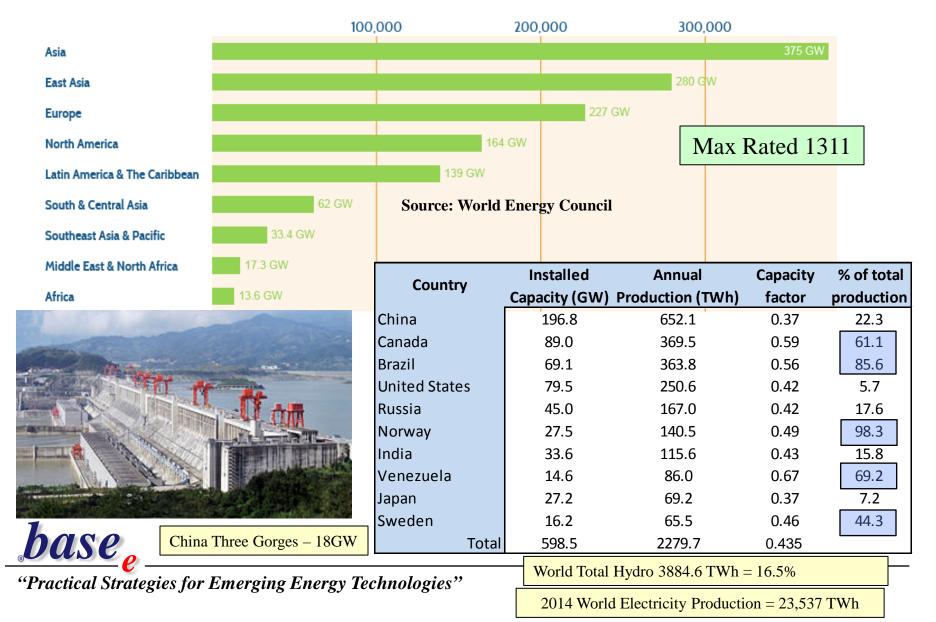
Westinghouse AP1000[®] plant under construction in Sanmen, China

base

French "Royal Bill" Initiatives

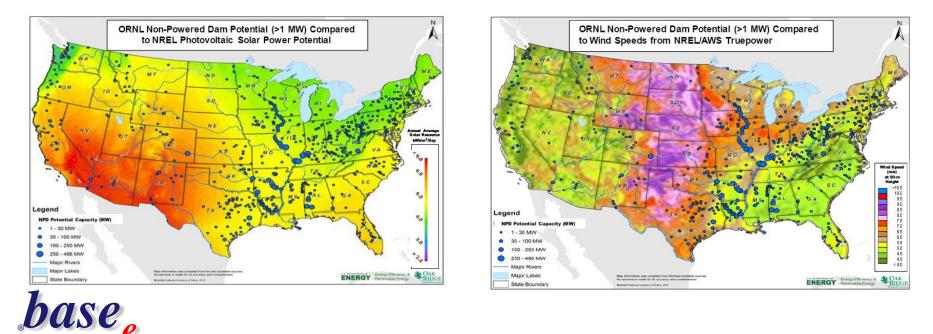
- Cut GHG emissions by:

- By 40% between 1990 (412 Mt) and 2030 (247 Mt)
- By 50% in 2050 (206 Mt)
- Nuclear
 - Cap nuclear capacity at the current 63.2GW,
 - Forcing closures w/any capacity additions
 - Currently at 75% share of generation
 - Goal is 50% by 2025
- Cut fossil fuels in energy mix by 30% vs. 2012
- Increase renewables to 32% of energy mix by ??
 - -Renewables 2013 = 5.9
 - -Hydro 2013 = 15.8


$$(5.9 + 15.8)/247.2 = 8.8\%$$

32.0%

- -Total 2013 247.2 Mtoe
- Increase the Carbon Tax on fossil fuels
 - €65/Mt in 2020 (a 4x increase)
 - €100/Mt in 2030



World Hydroelectric Capacity – 936 GW

12GW Complimentary Non-Power Dams (NPD)

Hydrologic Regions (HUC02)	Potential Capacity (MW)	Potential Generation (TWh/yr)	Hydrologic Regions (HUC02)	Potential Capacity (MW)	Potential Generation (MWh/yr)	100% 90%						_	-			-		_
1 New England	243	1.110	10 Missouri	258	0.865	00 70%	_		/				_	_	_	_	_	_
2 Mid-Atlantic	479	1.997	11 Arkansas-White-Red	1898	5.960	eo%		Α	-				_		_	_	_	_
3 South Atlantic-Gulf	1618	3.778	12 Texas-Gulf	608	1.308	04 E 50%	/					-		-	-		_	_
4 Great Lakes	156	0.903	13 Rio Grande	98	0.241	otto 40%				_	-	Top NP	D Potent	ial Capac	city		_	
5 Ohio	3236	13.603	14 Upper Colorado	53	0.145					_							-	_
6 Tennessee	53	0.197	15 Lower Colorado	124	0.370	0100 20%		_					_	-	-	-	_	_
7 Upper Mississippi	2027	9.943	16 Great Basin	29	0.080	a 10%	-	_	_		_	_	-	-	-	-	-	-
8 Lower Mississippi	743	2.802	17 Pacific Northwest	225	0.871	0%	50	100	15	10 20	250	300	350	400	450	500	550	600
9 Souris-Red-Rainy	58	0.239	18 California	156	0.586					Numbe	rofExis	ting No	-Powe	red Dan	ns			

Cumulative Geothermal Installed Capacity – 12.6GW

Cumulative installed g	jeotherma	l power ca	apacity*									Change	2014
•• •	0004	~~~~								0010		2014 over	share
Megaw atts	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2013	of total
China	28	28	28	28	24	24	24	24	24	27	27	0.0%	0.2%
Costa Rica	163	163	163	163	163	166	166	208	208	208	208	0.0%	1.7%
El Salvador	151	151	195	195	204	204	204	204	204	204	204	0.0%	1.6%
Iceland	202	202	312	485	576	576	575	665	665	665	665	0.0%	5.3%
Indonesia	807	850	850	980	1052	1189	1193	1209	1339	1339	1401	4.6%	11.1%
Italy	791	791	811	811	811	843	883	883	875	876	916	4.6%	7.3%
Japan	535	534	534	532	532	500	502	502	502	503	539	7.2%	4.3%
Kenya	167	167	167	170	174	174	209	212	217	253	590	133.7%	4.7%
Mexico	960	960	960	960	965	965	965	887	812	834	834	0.0%	6.6%
New Zealand	370	425	425	443	585	625	723	723	723	971	971	0.0%	7.7%
Philippines	1932	1978	1978	1958	1958	1953	1966	1783	1848	1868	1917	2.6%	<u>15.2%</u>
Russia (Kamchatka)	79	79	79	82	82	82	82	82	82	82	82	0.0%	0.7%
Turkey	20	20	28	28	35	82	94	114	114	226	368	62.6%	2.9%
US	2866	2893	2940	3037	3163	3289	3308	3318	3450	3524	3525	0.0%	28.0%
Total World	9225	9396	9655	10121	10575	10928	11152	11071	11397	11917	12594	5.7%	100.0%

Sources: International Geothermal Association, ThinkGeoEnergy, and national sources

Vehicle Fuel Economy (and GHG Emissions Standards)

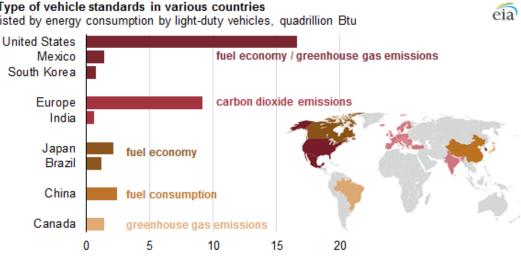
- Footprint-based corporate average

- Sets GHG emission and fuel economy targets and GHG _ emission targets based on the footprint of the vehicle, which is its wheelbase multiplied by average track width
- Overall target of the manufacturer is determined by averaging the target for each footprint the manufacturer produces

- Weight-based corporate average

- Similar to the footprint-based standard except they are based on vehicle weight

- Weight-class based per vehicle and corporate average


- More stringent than the weight-based corporate average standard alone.
- Light-duty vehicle manufacturers must meet a fuel consumption standard at each weight class level
- Must meet an overall corporate average fuel consumption standard

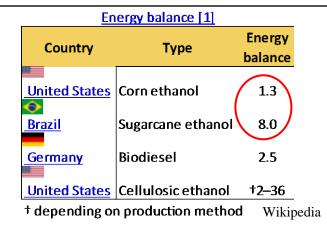
- Weight-class based corporate average

- Each light-duty vehicle in a weight class must meet the standard for the weight class rather than an overall manufacture standard

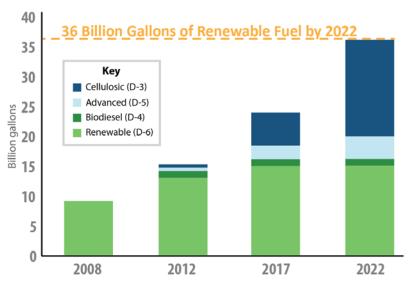
"Practical Strategies for Emerging Energy Technologies"

Structure of vehicle standards in various countries listed by energy consumption by light-duty vehicles, quadrillion Btu

eia


Type of vehicle standards in various countries

listed by energy consumption by light-duty vehicles, quadrillion Btu


Renewable Fuels Standards

- The Renewable Fuel Standard (RFS) is a USA federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of renewable fuels.
- The RFS originated with the Energy Policy Act of 2005
- Expanded and extended by the Energy Independence and Security Act of 2007 (EISA).
- Requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion gallons by 2022.
- Each renewable fuel category in the RFS program must emit lower levels of greenhouse gases relative to the petroleum fuel it replaces.

This is an ethanol subsidy....

Congressional Volume Target for Renewable Fuel

Well-to-Wheels Comparison Electric vs. Gasoline

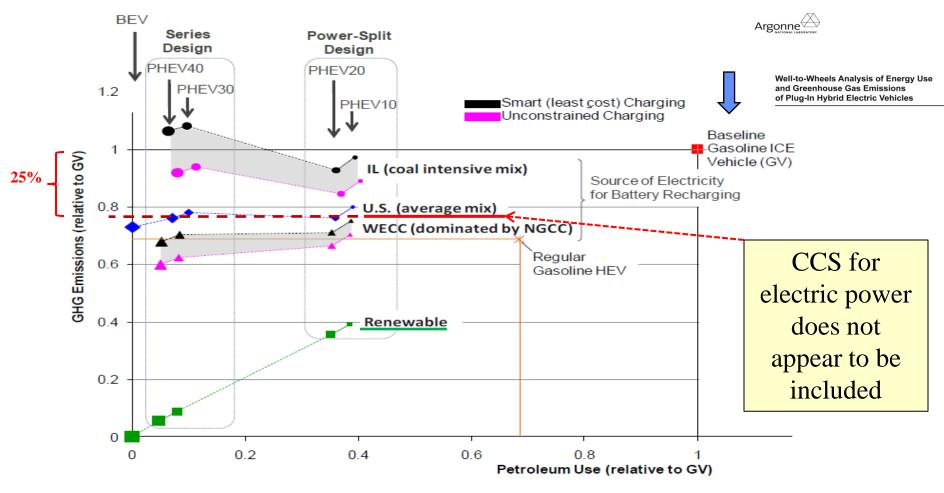


FIGURE ES.1 WTW Petroleum Use and GHG Emissions for CD Operation of Gasoline PHEVs and BEVs Compared with Baseline Gasoline ICEVs and Regular Gasoline HEVs base ______

EPA CO₂ Regulations

Units of Measure

Units of Mass

- Ton (short) = 2000 lb
- tonne (metric) = 1000 kg = 2205 lb
- Mt = mmt = million metric tonnes
- Gigatonne (Gt) = 1000 Mt

Units of Cost

- Plant Cost (\$/kW)
- LCOE Levelized Cost of Electricity (mils/kWh)

Utilization Rate

- Capacity Factor % = kWh produced/kWh rated
 - 85% Pulverized Coal
 - 75% NGCC
 - 20-30% Wind

base

"Practical Strategies for Emerging Energy Technologies"

Measures of Efficiency

- Power Plant Heat Rate
 Btu/kWh
- Power Plant Efficiency
 - 3412 Btu/kWh/Plant Heat Rate

- LHV & HHV Fuel Heat Content

- The gas company sells HHV
- Utilities normally use HHV
- Gas Turbine Industry uses LLV
- Natural Gas
 - LHV = 23,860 Btu/lb
 - HHV = 21,501 Btu/lb
- The effect is a 10% difference in claimed efficiency
- Net Output vs. Gross Output

Each fuel has:

- -An energy content Btu/lb
- -A carbon content lb-CO₂/mmBtu
- Each Power Plant (type) has
- efficiency or "heat rate" Btu/kWh

Fuel Carbon Factors – lb-CO₂/mmBtu

Rank	State of Origin	CO2 Factors Ibs per 10^6 Btu	Average	Rank	State of Origin	CO2 Factors Ibs per 10^6 Btu	Average
				Subbituminous	Alaska	214.00	
Anthracite	Pennsylvania	227.38		Subbituminous	Colorado	212.72	
				Subbituminous	lowa	200.79	
Bituminous	Alabama	205.46		Subbituminous	Missouri	201.31	
Bituminous	Arizona	209.68		Subbituminous	Montana	213.42	
Bituminous	Arkansas	211.60		Subbituminous	New Mexico	208.84	
Bituminous	Colorado	206.21		Subbituminous	Utah	207.09	
Bituminous	Illinois	203.51		Subbituminous	Washington	208.69	
Bituminous	Indiana	203.64		Subbituminous	Wyoming	212.71	208.84
Bituminous	lowa	201.57					
Bituminous	Kansas	202.79		Lignite	Arkansas	213.54	
Bituminous	Kentucky: East	204.80		Lignite	California	216.31	
Bituminous	Kentucky: West	203.23		Lignite	Louisiana	213.54	
Bituminous	Maryland	210.16		Lignite	Montana	220.59	
Bituminous	Missouri	201.31		Lignite	North Dakota	218.76	
Bituminous	Montana	209.62		Lignite	South Dakota	216.97	
Bituminous	New Mexico	205.71		Lignite	Texas	213.54	
Bituminous	Ohio	202.84		Lignite	Washington	211.68	
Bituminous	Oklahoma	205.93		Lignite	Wyoming	215.59	215.61
Bituminous	Pennsylvania	205.72		Lighte	tt y chining	210.00	
Bituminous	Tennessee	204.79		Natural Gas		116.38	116.38
Bituminous	Utah	204.08				110.00	110.00
Bituminous	Virginia	206.23		Courses Energy I	nformation Administration Ou	artarly Casl Danart Ion	\smile
Bituminous	Washington	203.62			nformation Administration, Qu		
Bituminous	West Virginia	207.10		Ivial. 1994, DUE-EIA-	0121(94/Q1) (Washington, D.0	o, August 1994), pp. 1-8.)	
Bituminous	Wyoming	206.48					
Bituminous	Texas	204.39	205.44)			
				This is w	where "Natura	l Gas is 1/2 of	f Coal

comes from

"Practical Strategies for Emerging Energy Technologies"

base

EPA NSPS Output Ratings 2014 – lb-CO₂/MWh

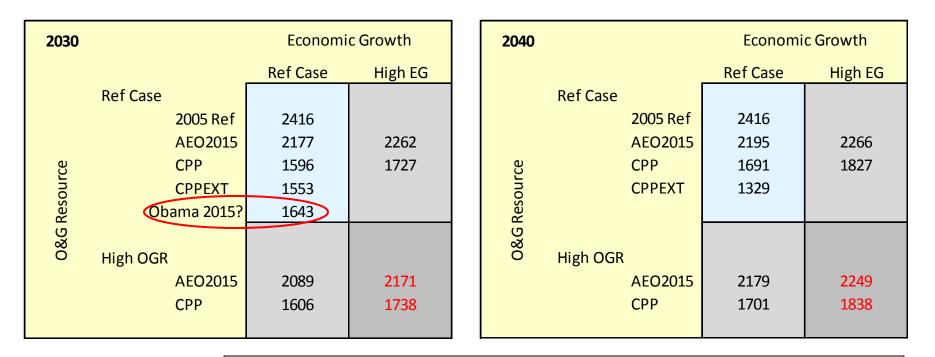
			Baseline Report							
Fuel	N	atural Gas	Ropoli			Bitumin	ous Coal			
Carbon Factor - Ib-CO2/mmBtu	116.4	116.4	116.4		203.3	203.3	203.3	203.3		
Power Plant										
- Туре	SC	NGCC	NGCC		PC	SCPC	USCPC	USCPC		
- Heat Rate (HHV) - Btu/kWh	9452	6313	6848		9276	8721	8412	7580		
- Efficiency - HHV%	36.1%	54.0%	49.8%		36.8%	39.1%	40.6%	45.0%		
- Efficiency - LHV%	40.1%	60.0%	55.3%		40.8%	43.4%	45.0%	50.0%		
- Thermal Input - mmBtu	850	850	850		850	850	850	850		
- Rating - MW@850 mmBtu/hr	89.93	134.64	124.12		91.63	97.47	101.05	112.14		
Emissions - Ib-CO2/MWh - Unabated - Applicable Threshold CCS % required to meet threshold	<u>1100.0</u> 1100 0.0%	734.7 1000 0.0%	797.0 1000 0.0%		1886.0 1000 47.0%	1773.2 1000 43.6%	<u>1710.3</u> 1000 41.5%	1541.2 1000 35.1%		
SPS = New Source Performation	nce Stand	lards					(11111 /			
			lb	$O - CO_2 / M$	4Wh = lb -	$-CO_2 / Bt$	u / kWh/ /10	00		
Natural Gas HHV Natural Gas LHV	21,501 23,860		lb	$-CO_2 / M$	4Wh = 116	5.4×6848	1000 = 797	7		
baseline Carbon Factors		<i>HHV efficiency</i> = $3412Btu / kWh / Heat Rate = \frac{3412}{6848} = 49.8\%$								

"The War on Coal"- EPA NSPS 2014

	Supercri	tical PC	NG	CC
Case	11	12	13	14
CO2 Capture	No	Yes	No	Yes
Gross Power Output - kWe	580,400	662,800	564,700	511,000
Auxilliary Power Requirements - kWe	30,410	112,830	9,620	37,430
Report Net Power Output - kWe	549,990	549,970	555,080	473,570
Net Plant HHV Efficiency - %	39.30%	28 40%	> 50.20%	42.80%
Net Plant HHV Heat Rate - Btu/kWh	8,687	12,002	6,798	7,968
	1005	0.500	70.5	1500
Total Plant Cost - \$/kW	1995	3583	725	1509
Total Overnight Cost - \$/kW	2452	4391	> ⁸⁹¹	1842
Total as Spent Cost - \$/kW	2782	5006	957	1986
LCOE - mils/kWh	80.95	137.28	> 59.59	86.58
CO2 Emissions - Ib/MWh	1768	244	804	94
\$/MMBtu	2.94	2.94	6.13	6.13
Load Factor	85%	85%	85%	85%
kW Nominal Gross	580,411	662,836	559,532	593,471
550,000 kW Nominal Net	550,000	550,000	550,000	550,000
Total as Spent Capital	\$1,529,834,783	\$2,753,292,297	\$526,223,607	\$1,092,280,160
Cost Premium vs. NGCC Case 13	1.003.611.175	2,227,068,690	\$520,225,001	566,056,553
Cost i remain vs. NOCO ouse is	1,005,011,175	2,227,000,030	-	300,030,333
kWh/year	4,095,300,000	4,095,300,000	4,095,300,000	4,095,300,000
MMBtu/year	35,575,871	49,151,791	27,839,849	32,631,350
Annual Fuel	\$104,593,061	\$144,506,264	\$170,658,277	\$200,030,178
Fuel Cost vs. NGCC Case 13	(\$66,065,216)	(\$26,152,012)		\$29,371,901
LOOE	\$331,514,535	\$562,202,784	\$244,038,927	\$354,571,074
Fuel%	31.6%	\$302,202,784 25.7%		5554,571,074 56.4%
Fuel%	31.0%	23.1%	69.9%	30.4%
\$60.00 per tonne	\$197,051	\$27,194	\$90.438	\$9.021
CO2 Cost vs. NGCC Case 13	\$106,612	(\$63,244)		(\$81,417)
	,			. , ,
tonnes-CO2/year	3,284	453	1,507	150

SCPC vs. NGCC First Cost \$/kW is ~5x LCOE is 2.3x Efficiency is ~1/2 w/Natural Gas at \$6.13

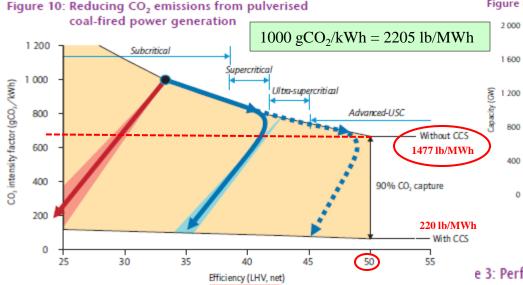
Power Generation Shift 2015-2016


- The USA is the world's largest producer of nuclear power, accounting for more than 30% of worldwide nuclear generation of electricity.
- There are now 99 units operable (98.7 GWe) and five under construction.
- Following a 30-year period in which few new reactors were built, it is expected that six new units may come on line by 2020
- However, lower gas prices since
 2009 have put the economic viability
 of some existing reactors and
 proposed projects in doubt.

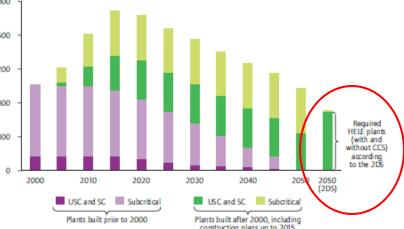
TYPE OF PLANT (2015-2016)	ADDITIONS (MW)	RETIREMENTS (MW)	NET (MW)
BATTERIES	10.50	-	10.50
CONVENTIONAL HYDROELECTRIC	637.00	323.00	314.00
CONVENTIONAL STEAM COAL	380.00	16,961.50	(16,581.50)
GEOTHERMAL	3.70	-	3.70
LANDFILL GAS	56.40	22.40	34.00
MUNICIPAL SOLID WASTE	96.00	-	96.00
NATURAL GAS FIRED COMBINED CYCLE	14,584.00	139.00	14,445.00
NATURAL GAS FIRED COMBUSTION TURBINE	2,225.20	1,709.00	516.20
NUCLEAR	1,269.90	-	1,269.90
OFFSHORE WIND TURBINE	30.00	-	30.00
ONSHORE WIND TURBINE	17,103.10	25.30	17,077.80
OTHER NATURAL GAS	1,058.20	874.20	184.00
OTHER WASTE BIOMASS	61.60	1.20	60.40
PETROLEUM LIQUIDS	56.70	1,086.80	(1,030.10)
SOLAR PHOTOVOLTAIC	8,472.60		8,472.60
SOLAR THERMAL WITH ENERGY STORAGE	131.00	-	131.00
SOLAR THERMAL WITHOUT ENERGY STORAGE	773.40	-	773.40
WOOD/WOOD WASTE BIOMASS	223.70	33.50	190.20
ALL OTHER	146.00		146.00
NET TOTAL 2015	18,965.00	14,938.20	4,026.80
NET TOTAL 2016	28,354.00	6,237.70	22,116.30
NET TOTAL 2015-2016	47,319.00	21,175.90	26,143.10

These are nameplate ratings...be mindful of load factor.

EPA Clean Power Plan - 2015



"32% reduction in 2005 power plant CO₂ emissions by 2030"


What does that really mean? It's time for those pesky numbers again!

High Efficiency, Low Emissions Coal (HELE)

Figure 8: Projected capacity of coal-fired power generation to 2050

e 3: Performance of HELE coal-fired power technologies

5 I	-		Emis	sions	Max. unit	Capacity	CCS energy	
Fuel type	Plant type	CO ₂ (g/kWh)	NO _X	SO ₂ (mg/Nm²)	РМ	capacity (MWe)	factor (%)	penalty (%-points)
	PC (USC)	740	<50 to 100 (by SCR)	<20 to 100 (by FGD)	<10	1 100 ³	80	7 to 10
	CFBC	880 to 900	<200	<50 to 100 (in situ)	<50	460	80	(post- combustion
Coal	PC (A-USC) ¹	670 (700°C)	<50 to 100 (by SCR)	<20 to 100 (by FGD)	<10	<1 000 (possible)		and oxy- fuel)
	IGCC ^{1,2}	670 to 740	<30	<20	<1	335	70	-
	IGFC ¹	500 to 550	<30	<20	<1	<500		7

- U.S. consumption of coal totaled 18 quadrillion Btu in 2013, a 4-percent increase from 2012
- Electric power sector consumption accounted for 91 percent of total consumption in 2013
- The price of coal averaged \$2.52 per million Btu in the United States in 2013, a 3-percent decrease from 2012
- Prices ranged from \$1.44 per million Btu in Nebraska to \$4.90 per million Btu in Alaska.

Source: IEA Technology Roadmap High Efficiency Low Emissions Coal-fired Power Generation

EPA Output Ratings 2015 – lb-CO₂/MWh

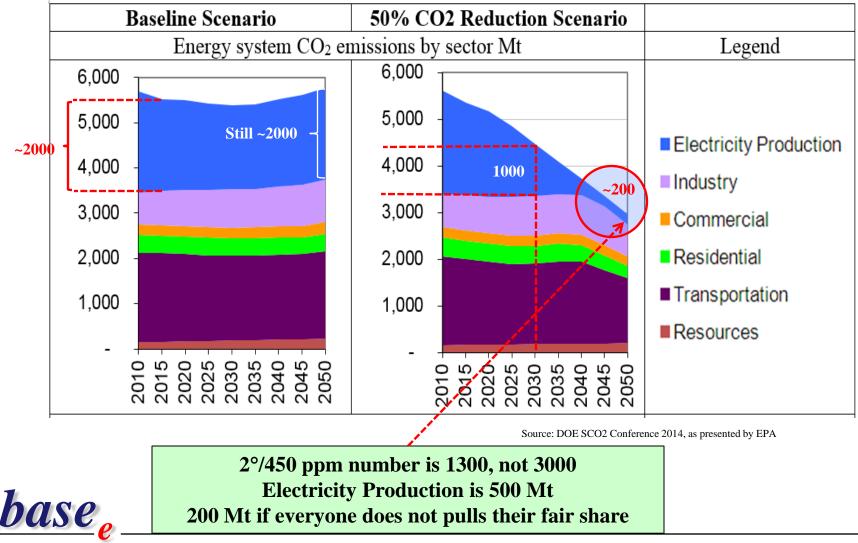
			Baseline Report								
Fuel		Natural Gas				Bitumino	us Coal				
Carbon Factor - Ib-CO2/mmBtu	116.4	116.4	116.4		203.3	203.3	203.3	203.3			
Power Plant											
- Туре	SC	NGCC	NGCC		PC	SCPC	USCPC	USCPC			
- Heat Rate (HHV) - Btu/kWh	9885	6602	7162	1	8795	8268	7975	7187			
- Efficiency - HHV%	34.5%	51.7%	47.6%	-	38.8%	41.3%	42.8%	47.5%			
- Efficiency - LHV%	38.3%	57.3%	52.9%		43.1%	45.8%	47.5%	52.7%			
- Thermal Input - mmBtu	850	850	850]	850	850	850	850			
- Rating - MW@850 mmBtu/hr	85.99	128.74	118.68	_	96.65	102.80	106.58	118.28			
Emissions - Ib-CO2/MWh - Unabated	1150.4	768.4	833.5		1788	1681	1622	1461			
- Applicable Threshold - Interim - Final	1150 1150	832 771	832 771		1534 1305	1534 1305	1534 1305	1534 1305			
CCS % required to meet final threshold	0.04%	0.00%	7.50%		27.02%	22.37%	19.52%	10.69%			
		Do you notice a theme here???									

"Practical Strategies for Emerging Energy Technologies"

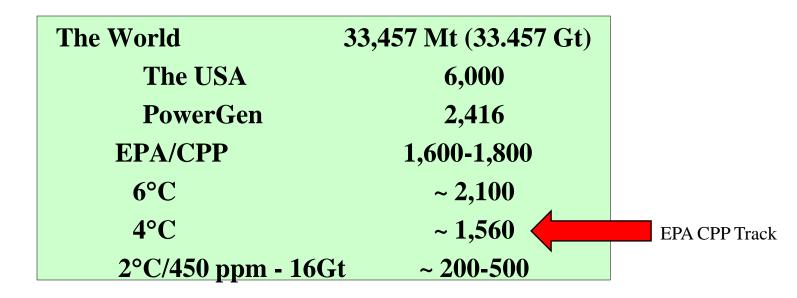
base,

"The (New) War on Coal"- EPA NSPS 2015

	Supercrit		NGO	
Case	11	12	13	14
CO2 Capture	No	Yes	No	Yes
Gross Power Output - kWe	580,400	662,800	564,700	511,000
Auxilliary Power Requirements - kWe	30,410	112,830	9,620	37,430
Report Net Power Output - kWe	549,990	549,970	555,080	473,570
Net Plant HHV Efficiency - %	39.30%	28.40%	50.20%	42.80%
Net Plant HHV Heat Rate - Btu/kWh	8,687	12,002	6,798	7,968
Total Plant Cost - \$/kW	1995	3583	725	1509
Total Overnight Cost - \$/kW	2452	4391	891	1842
Total as Spent Cost - \$/kW	2782	5006	957	1986
LCOE - mils/kWh	80.95	137.28	59.59	86.58
CO2 Emissions - Ib/MWh	1768	244	804	94
\$/MMBtu	2.94	2.94	6.13	6.13
Load Factor	85%	85%	85%	85%
kW Nominal Gross	580,411	662,836	559,532	593,471
550,000 kW Nominal Net	550,000	550,000	550,000	550,000
Total as Spent Capital	\$1,529,834,783	\$2,753,292,297	\$526,223,607	\$1,092,280,16
Cost Premium vs. NGCC Case 13	1,003,611,175	2,227,068,690	-	566,056,553
kWh/year	4,095,300,000	4,095,300,000	4,095,300,000	4,095,300,000
MMBtu/year	35,575,871	49,151,791	27,839,849	32,631,350
Annual Fuel	\$104,593,061	\$144,506,264	\$170,658,277	\$200,030,178
Fuel Cost vs. NGCC Case 13	(\$66,065,216)	(\$26,152,012)	-	\$29,371,901
LCOE	\$331,514,535	\$562,202,784	\$244,038,927	\$354,571,074
Fuel%	31.6%	25.7%	69.9%	56.4%
	\$229,892	\$31,726	\$105,511	\$10,524
\$70.00 per tonne				
\$70.00 per tonne CO2 Cost vs. NGCC Case 13	\$124,381	(\$73,785)	-	(\$94,987)

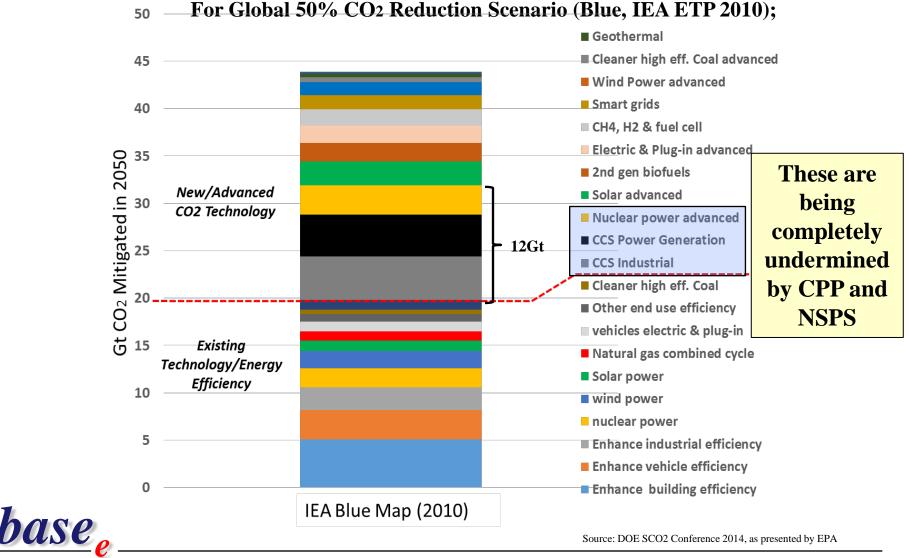

SCPC vs. NGCC First Cost \$/kW is ~3x LCOE is 1.35x Efficiency is ~3/4 w/Natural Gas at \$6.13

CCS is totally eliminated as a viable option


Is That Good Enough?

A Credible 50% CO2 Reduction Scenario by 2050

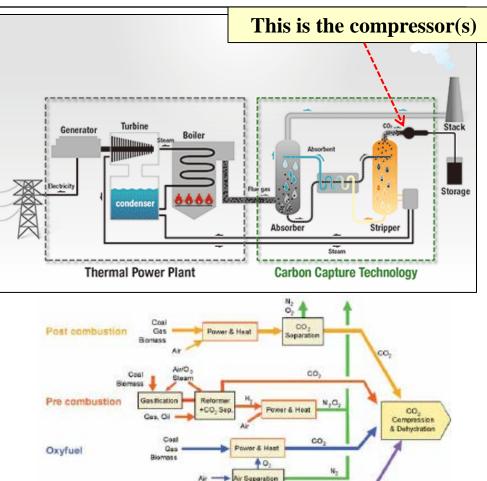
"Practical Strategies for Emerging Energy Technologies"

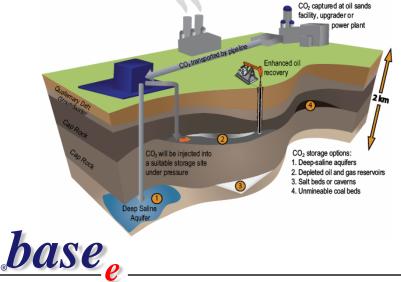


No....

...and that does not even consider that the non-PowerGen contributors will have a much larger challenge to match PowerGen

New & Advanced Technologies Needed




What is Carbon Capture & Storage (CCS)?

Fossil Fuel Power Plant – CC&S

- All fossil fuel power plants produce some level of CO2
- CO2 compressor power
- Advanced pulverize coal 8-12%
 - 600MW ⇒70MW ⇒93,000 hp
- IGCC 5%
 - 600MW ⇒30MW ⇒40,000 hp
- NGCC 8%
 - 400MW ⇒32MW ⇒43,000 hp

"Practical Strategies for Emerging Energy Technologies"

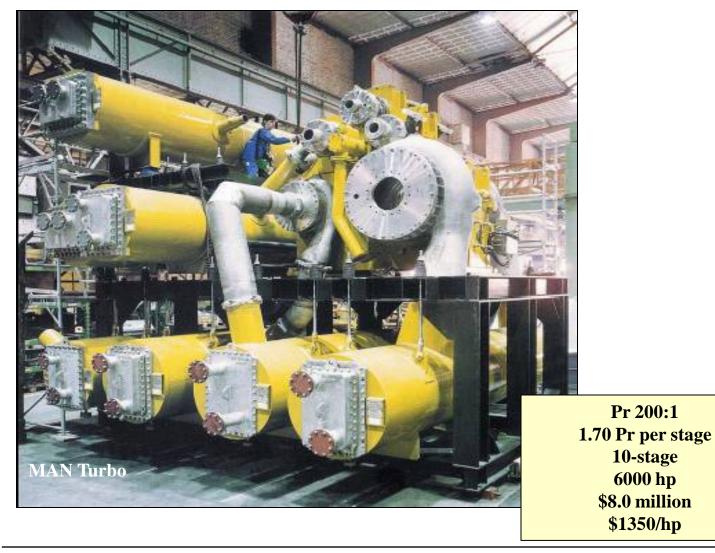
Compression Costs are 36% of Total Cost/Mt of CO2

Tecess +CO, Se

CO.

Gas, Ammonia, Steel

Cas

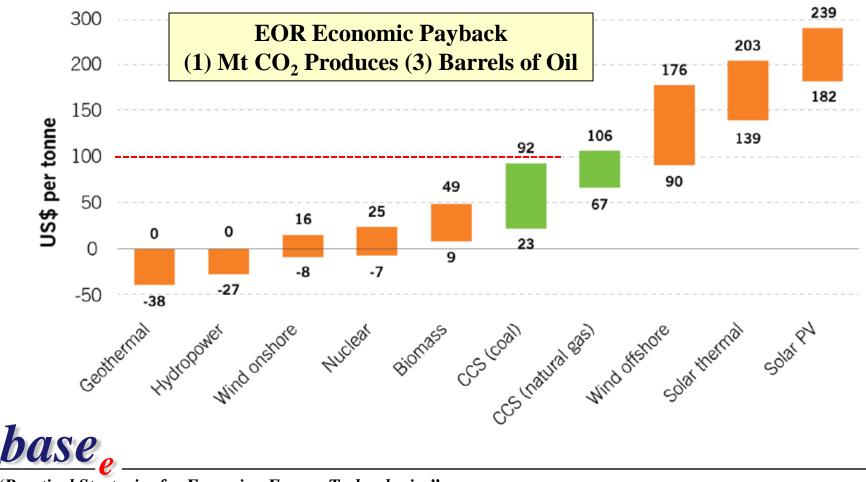

Riemann

Cas

Rev material

Industrial processes

This is what 6000 hp Compressor Really Looks Like



"Practical Strategies for Emerging Energy Technologies"

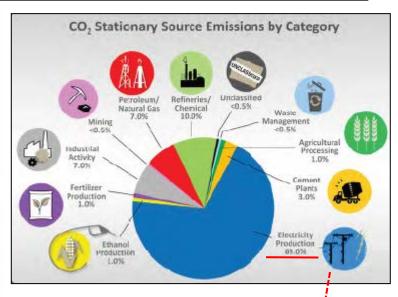
base.

Costs of CO₂ avoided

Source: Global CCS Institute Victor Der July 2013

NETL U.S. Carbon Storage Atlas V

Estimates of CO₂ Stationary Source Emissions and Estimates


of CO₂ Storage Resources for Geologic Storage Sites **CO**₂ Stationary **CO₂ Storage Resource Estimates** Sources (billion metric tons of CO₂) **RCSP** or Saline **Oil and Gas** Unmineable Geographic CO2 Number Formations **Coal Areas** Reservoirs Region Emissions of (million metric tons Sources Med. Med" High Med High Low High Low Low per year) BSCSP 115 301 211 805 2,152 <1 <1 1 <1 <1 <1 MGSC 267 380 41 163 421 <1 <1 <1 2 3 3 MRCSP 604 9 1,308 108 122 143 14 26 <1 <1 <1 PCOR* 522 946 305 583 1.012 2 9 7 7 7 4 SECARB 1.022 1,857 1,376 5,257 14,089 27 41 33 51 75 34 SWP 2 326 779 256 1,000 2,693 144 147 148 <1 1 WESTCARB* 555 82 398 1,124 4 5 7 11 17 25 162 Non-RCSP** 53 232 ---------------------3,071 Total 6,358 2,379 8,328 21,633 186 232 54 80 113 205

Source: U.S. Carbon Storage Atlas -- Fifth Edition (Atlas V); data current as of November 2014

* Totals include Canadian sources identified by the RCSP

** As of November 2014, "U.S. Non-RCSP" includes Connecticut, Delaware, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, and Puerto Rico

*** Medium = p50

Sources >25,000 tonnes Electricity Production 69% 2005 = 2416 Mt 2012 = 0.69 x 3,071 = 2,119 Mt

U.S. Totals (Slide 12) -2011 = 5601 (37.6%)-2015 = 5680 (37.3%)

http://www.netl.doe.gov/research/coal/carbon-storage/natcarb-atlas

Putting a Value on CO₂ – Two Popular Choices _

"Cap & Trade"

- Is really two distinct components
- "Trade" is easy with existing market mechanisms already in place
- "Cap" is political, given to influence
- Do we really want politicians in the middle of this?
- Do they want to be in the middle of this?
- This is what destroyed the EU CO₂ Market when too many credits were given away

"Carbon Tax" – two concepts

- "Tax/Fee & Dividend
 - Administered thru political process
 - "Revenue Neutral" because the money is returned to the public (minus an admin fee, of course)
 - Actual impact on behavior is questionable – demand is generally inelastic
- -Simple Energy Tax

Most parties agree the most important action is to put a value on CO₂

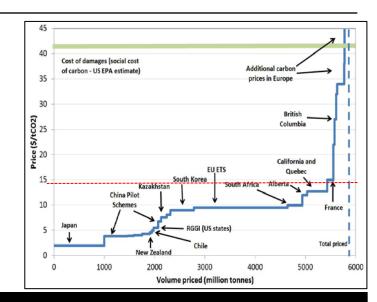
Third Choice – Waste Disposal Fee

"Waste Disposal Fee"

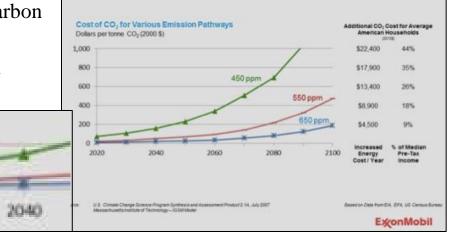
- Limited political oversight required
- Fee based on usage
- Actually use the money to fix the problem
- We don't have sufficient disposal options & we are not developing any at this time

CO₂ Pricing

Source: On Climate Change Policy


Carbon pricing is spreading

- Prices are far too low to price emissions efficiently
- The vast majority of priced emissions about 90% of the total are priced below $14/tCO_2$
- Higher carbon prices are invariably for small volumes, and are found in Europe, British Columbia and Alberta
- The environmental damage caused by emissions as estimated the US EPA
- Carbon prices are thus too low even compared with a likely underestimate of the cost of emissions
- Taxes are too low and caps are too loose to price carbon adequately

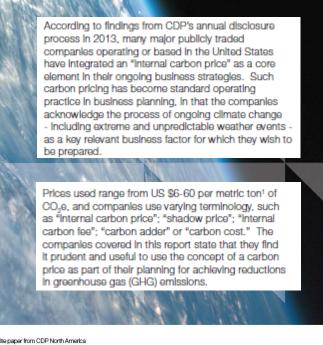

200

2020

- Consequently efficient abatement is not happening.

Substantial Costs for CO₂ Mitigation

"Practical Strategies for Emerging Energy Technologies"


Corporate "Shadow" Pricing

Use of internal carbon price by companies as incentive and strategic planning tool

A review of findings from CDP 2013 disclosure

December 2013

A white paper from CDP North America

"Practical Strategies for Emerging Energy Technologies"

Figure 1: 29 Companies disclose using an internal price on carbon*

Consumer Discretionary		
	Delphi Automotive Pic	
	Walt Disney Company, \$10-20	**
Consumer Staples		
	ConAgra Foods, Inc.	
	Wal-Mart Stores, Inc.	
Energy		
•	Apache Corporation	
	BP, \$40	
•	Chevron Corporation	
	ConocoPhillips, \$8 - 46	
	Devon Energy Corporation, \$15	5
	Exxon Mobil Corporation, \$60	
•	Hess Corporation	Exxon Mobil \$60/Mt
	Royal Dutch Shell, \$40	
	Total, \$34	
Financials		
•	Wells Fargo & Company	
Industrials		
•	Cummins Inc.	
	Delta Alr Lines	
	General Electric Company	
Information Technology		
•	Google Inc., \$14	
	Jabli Circuit, Inc.	
•	Microsoft Corporation, \$6-7 **	
Materials		
•	E.I. du Pont de Nemours and C	Company
Utilities		
•	Ameren Corporation, \$30	
	American Electric Power Comp	any, Inc.
	CMS Energy Corporation	
	Duke Energy Corporation	
	Entergy Corporation	
	Integrys Energy Group	
	PG&E Corporation	
	Xcel Energy Inc., \$20	

Oil Company Chiefs Back Climate Change Pact

The chief executives of 10 large oil and gas companies have agreed to collaborate on cutting emissions of <u>greenhouse gases</u>, calling for an international agreement on climate change at the "<u>COP21</u>" summit next December in Paris.

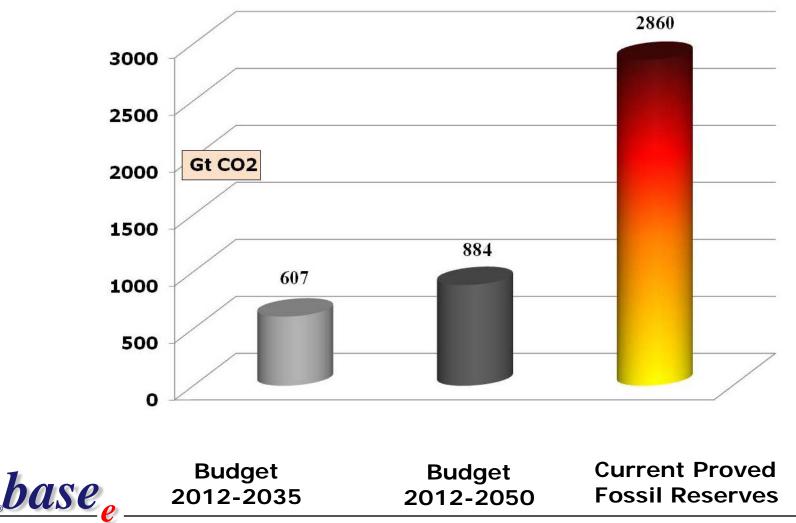
In a "joint collaborative declaration," members of the Oil & Gas Climate Initiative said they have lowered GHG emissions from operations by a collective 20% over the past 10 years and continue to invest in natural gas, carbon capture and storage (CCS), renewable energy, and research.

At the Paris meeting, held under auspices of the United National Environmental Program, world leaders will seek agreement on steps to lower emissions thought to be enough to keep globally averaged temperature from rising more than 2°C. above preindustrial levels.

The declaration noted a dual challenge to governments of allowing energy supply to grow as needed and of lowering GHG emissions.

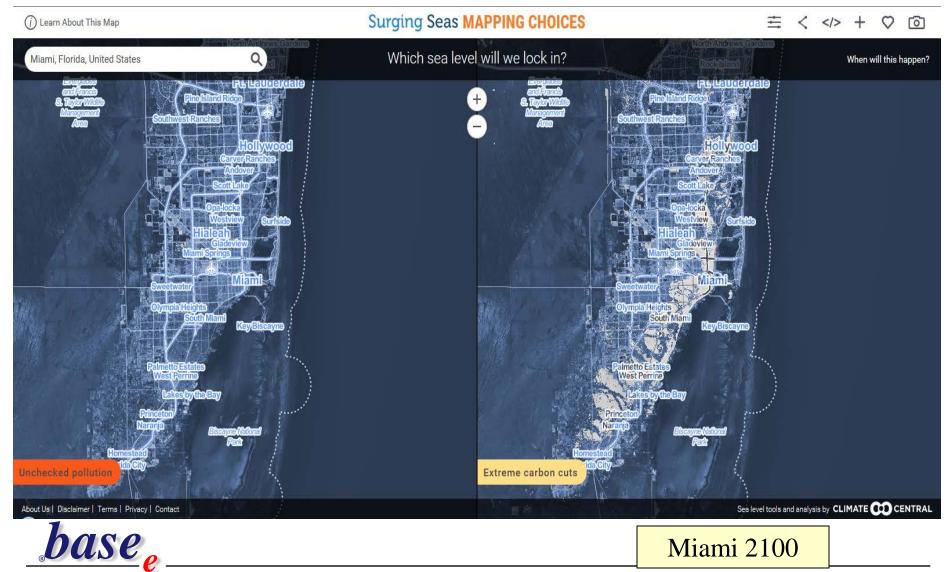
"It is our hope that COP21 will help to overcome these challenges and put us on a progressive pathway for addressing climate change," it said.

Signatories represent BG Group, BP, Eni, Pemex, Reliance Industries Ltd., Repsol, Shell, Saudi Aramco, Statoil, and Total.


They committed to collaborate, "with the aim of going beyond the sum of our individual efforts," in these areas.

O&G Journal 10/16/2015

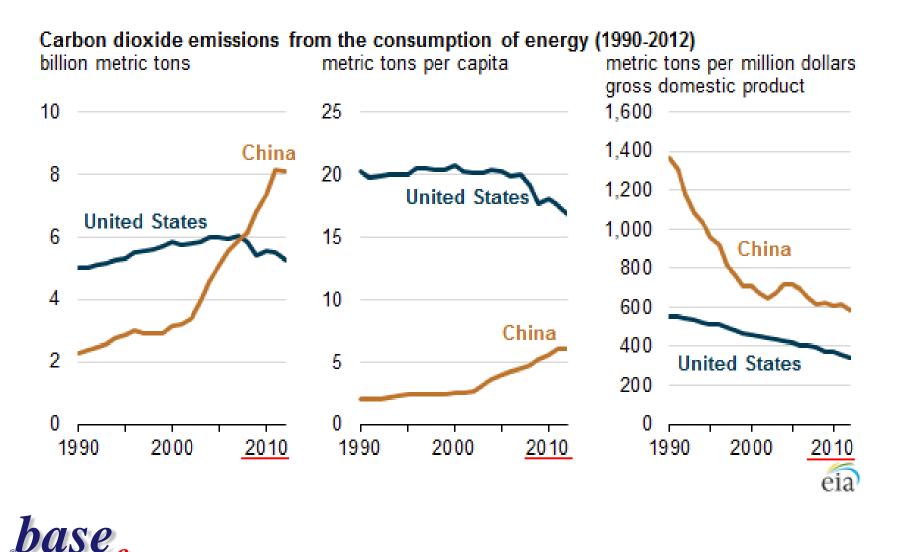
Stranded fossil Assets

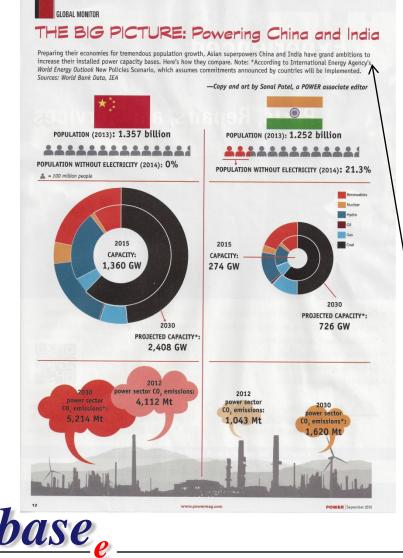

Source: IEA, WEO 2012 ©OECD/IEA 2012

How About Putting a Value on Miami?

How About Putting a Value on Miami?

Targets and Measurements (goal setting)


- Developed Economies want hard targets on tonnes of CO₂ emitted
- Developing Economies want tonnes-CO₂/GDP to allow their economies to continue to grow
 - Some have suggested reparations are in order to compensate developing countries for the damage caused by the developed economies
- China, the USA, and now India are the only countries in that can make a difference in this discussion and in reaching any of the goals.
 - The other countries will follow in line once these "big three" reach agreement.
 - That said, such an agreement may take a while.
- The are very few scenarios to reaching 450 ppm/2°C that do not include both nuclear and CCS
- Placing a value on CO₂ can eliminate the "need" for goals and maybe political involvement!!!


"Practical Strategies for Emerging Energy Technologies"

base_e proprietary

Paris Targets

China & India

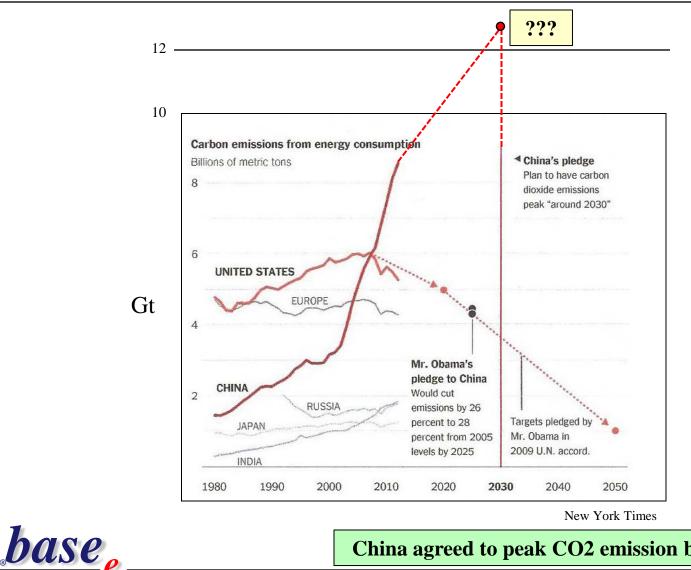
"Practical Strategies for Emerging Energy Technologies"

China Power Sector

- 2012
 - 4,112 Mt vs. 8,381 Mt total 49.1%

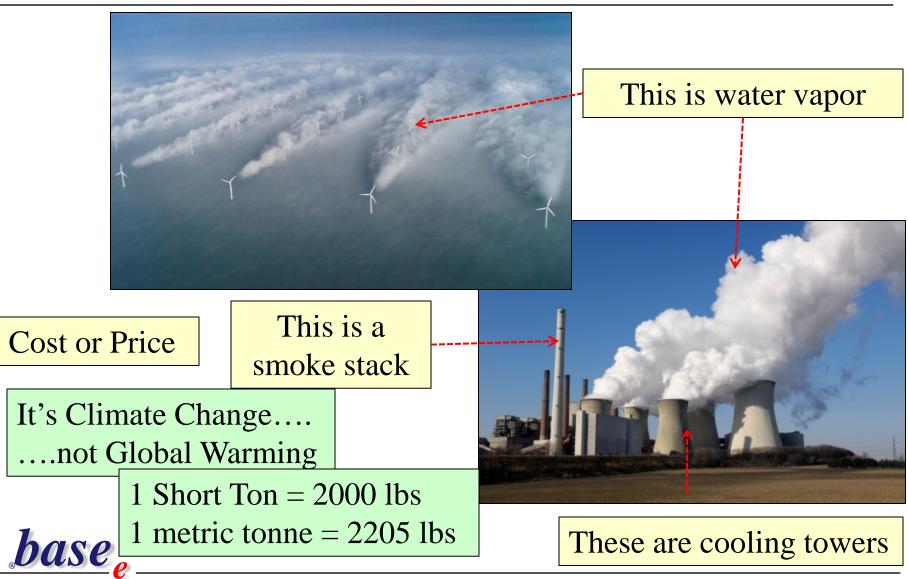
- 2030

- 5,214 Mt vs. 12,262 Mt - 42.5%


India Power Sector

- 2012
 - 1,043 Mt vs. 1,633 Mt total 63.9%
- 2030
 - 1,620 Mt vs. 2,728 Mt 59.4%

Note: "According to IEA World Energy Outlook, New Policies Scenario, which assumes commitments announced by countries will be implemented."


> Source: EIA via Power Magazine September 2015

The China-U.S. – 2014 CO2 Emissions Agreement - Gt

China agreed to peak CO2 emission by 2030

Pete's Pet Peaves

- Put a Value on CO₂
 - My favorite "CO₂ Waste Disposal Fee"
 - Get the 'politico's out of the process
- Drive CCS for all Power Plants at 300 lb-CO₂/MWh
 - Forces capture for all types of Power Plants
 - Incents NGCC to design "Capture Ready
 - Uses the lower cost of natural gas to offset the added cost of CCS
 - Actually get on the "learning curve" and the trajectory to 2°C/450PPM
 - Supports all clean motor vehicle applications
- Accelerate CCS selection & pre-permitting process for "solutions"
 - Capture processes
 - Pipelines
 - Storage sites

Put a price on CO₂ and a value on Miami!

- Eliminate distorting Renewable Portfolio Standards & Production Tax Credits

Winchester Unitarian Society

478 Main St, Winchester, MA 01890 (781) 729-0949

http://winchesteruu.org/

Pete Baldwin

(617)-306-7419

www.base-e.net

Appendix

AEO2014 Cost & Performance New Generating Tech

Technology	Online Year ¹	Size (MW)	Lead time (years)	Base Overnight Cost in 2013 (2012 \$/kW)	Project Contingency Factor ²	Technological Optimism Factor ³	Total Overnight Cost in 2013 [°] (2012 \$/kW)	Variable O&M´ (2012 \$/MWh)	Fixed O&M (2012\$/kW-yr	Heatrate ⁶ in 2013 .)(Btu/kWh)	nth-of-a-kind Heatrate (Btu/kWh)
Scrubbed Coal New	2017	1300	4	2,734	1.07	1.00	2,925	4.47	31.18	8,800	8,740
Integrated Coal-Gasification Comb Cycle (IGCC)	2017	1200	4	3,525	1.07	1.00	3,771	7.22	51.39	8,700	7,450
IGCC with carbon sequestration	2017	520	4	5,958	1.07	1.03	6,567	8.45	72.84	10,700	8,307
Conv Gas/Oil Comb Cycle	2016	620	3	871	1.05	1.00	915	3.60	13.17	7,050	6,800
Adv Gas/Oil Comb Cycle (CC)	2016	400	3	945	1.08	1.00	1,021	3.27	15.37	6,430	6,333
Adv CC with carbon sequestration	2017	340	3	1,856	1.08	1.04	2,084	6.78	31.79	7,525	7,493
Conv Comb Turbine ⁸	2015	85	2	924	1.05	1.00	971	15.45	7.34	10,817	10,450
Adv Comb Turbine	2015	210	2	641	1.05	1.00	673	10.37	7.04	9,750	8,550
Fuel Cells	2016	10	3	6,099	1.05	1.10	7,044	42.99	0.00	9,500	6,960
Adv Nuclear	2019	2234	6	4,763	1.10	1.05	5,501	2.14	93.28	10,464	10,464
Distributed Generation - Base	2016	2	3	1,414	1.05	1.00	1,485	7.76	17.45	9,027	8,900
Distributed Generation - Peak	2015	1	2	1,698	1.05	1.00	1,783	7.76	17.45	10,029	9,880
Biomass	2017	50	4	3,590	1.07	1.02	3,919	5.26	105.64	13,500	13,500
Geothermal ^{7,9}	2016	50	4	2,375	1.05	1.00	2,494	0.00	112.92	9,716	9,716
Municipal Solid Waste	2014	50	3	7,751	1.07	1.00	8,294	8.75	392.81	18,000	18,000
Conventional Hydropower ⁹	2017	500	4	2,213	1.10	1.00	2,435	2.65	14.83	9,716	9,716
Wind	2014	100	3	2,061	1.07	1.00	2,205	0.00	39.55	9,716	9,716
Wind Offshore	2017	400	4	4,503	1.10	1.25	6,192	0.00	74.00	9,716	9,716
Solar Thermal ⁷	2016	100	3	4,715	1.07	1.00	5,045	0.00	67.26	9,716	9,716
Photovoltaic ^{7,10}	2015	150	2	3,394	1.05	1.00	3,564	0.00	24.69	9,716	9,716

AEO 2014 Early Release

Gross vs. Net Power

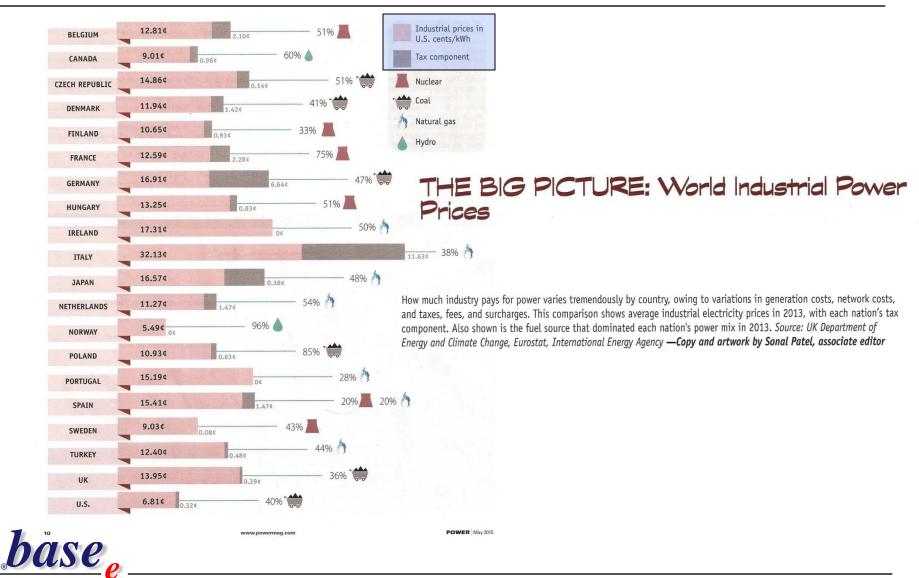
		Integrate	ed Gacificat	ion Combine	ed Cycle		Pulverized Coal Boller				NG	CC 33
	0		CoP Shell		ell	PC Suboritioal			PC Superoritioal		Advanced F Class	
	Case 1	Case 2	Case 3	Case 4	Case 6	Case 6	Case 9	Case 10	Case 11	Case 12	Case 13	Case 14
CO ₂ Capture	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Bross Power Output (kW,)	770,350	744,960	742,510	693,840	748,020	693,555	583,315	679,923	580,260	663,445	570,200	520,090
Auxiliary Power Requirement (KW _a)	130,100	189,285	119,140	175,600	112,170	176,420	32,870	130,310	30,110	117,450	9,840	38,200
Net Power Output (kW_)	640,250	555,675	623,370	518,240	635,850	517,135	550,445	549,613	550,150	545,995	560,360	481,890
Coal Flowrate (Ib/hr)	489,634	500,379	463,889	477,855	452,620	473,176	437,699	646,589	411,282	586,627	N/A	N/A
latural Gas Flowrate (Ib/hr)	NA	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	165,182	165,182
HV Thermal Input (kW _p)	1,674,044	1,710,780	1,586,023	1,633,771	1,547,493	1,617,772	1,496,479	2,210,668	1,406,161	2,005,660	1,103,363	1,103,363
Net Plant HHV Efficiency (%)	38.2%	32.5%	39.3%	31.7%	41.1%	32.0%	36.8%	24,9%	39,1%	27.2%	50.8%	43.7%
Net Plant HHV Heat Rate (Btu/kW-hr)	8,922	10,505	8,681	10,757	8,304	10,674	9,276	13,724	8,721	12,534	6,719	7,813
Raw Water Ucage, gpm	4,003	4,579	3,757	4,135	3,792	4,563	6,212	12,187	5,441	10,444	2,511	3,901
Fotal Plant Cost (\$ x 1,000)	1,160,919	1,328,209	1,080,166	1,259,883	1,256,810	1,379,524	852,612	1,591,277	866,391	1,567,073	310,710	564,628
Total Plant Cost (\$/kW)	1,813	2,390	1,733	2,431	1,977	2,668	1,549	2,895	1,575	2,870	554	1,172
LCOE (mills/kWh) ¹	78.0	102.9	75.3	105.7	80.5	110.4	64.0	118.8	63.3	114.8	68.4	97.4
CO ₂ Emissions (lb/hr)	1,123,781	114,476	1,078,144	131,328	1,054,221	103,041	1,038,110	152,975	975,370	138,681	446,339	44,634
CO2 Emissions (tons/year) @ CF1	3,937,728	401,124	3,777,815	460,175	3,693,990	361,056	3,864,884	569,524	3,631,301	516,310	1,661,720	166,172
CO ₂ Emissions (tonnes/year) @ CF ¹	3,572,267	363,896	3,427,196	417,466	3,351,151	327,546	3,506,185	516,667	3,294,280	468,392	1,507,496	150,750
CO ₂ Emissions (Ib/MMBtu)	197	19.6	199	23.6	200	18.7	203	20.3	203	20.3	119	11.9
O ₂ Emissions (ib/MWh) ²	1,459	154	1,452	189	1,409	149	1,780	225	1,681	209	783	85.8
CO, Emissions (Ib/MWh) ³	1,755	206	1,730	253	1,658	199	1,886	278	1,773	254	797	93

¹ Capacity factor is 80% for IOCC cases and 85% for PC and NOCC cases

² Value is based on gross output

^a Value is based on net output

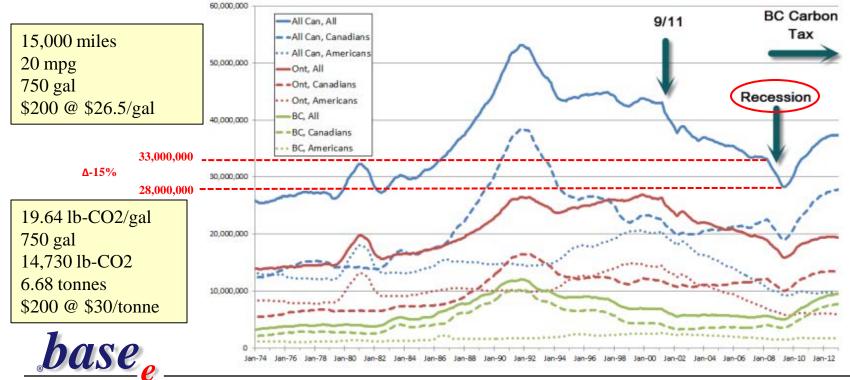
Note magnitude of Auxiliary Power


Cost and Performance Baseline for

Fossil Energy Plants

DOE/NETL-2007/1281

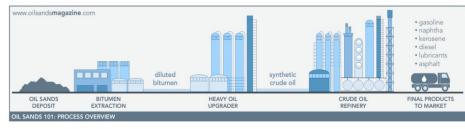
The Big Picture: World Industrial Power Prices



British Columbia Carbon Tax "Success"

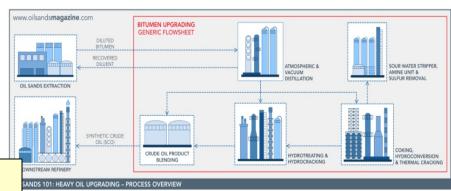
- "Successful implementation"
 - 16% drop in consumption after introduction in 2008
- Initially \$C10/tonne, increasing to current \$C30/tonne
 - \$C30/tonne = 7 cents/liter = 26.5 cents/gallon
- Use of ½ Carbon Tax funds for Regional Transit expansion denied
- A 2nd Carbon Tax is being discussed to fund the Region's Transit expansion

"The goal of the carbon tax, reducing carbon, is just completely synchronous with public transit funding and getting people out of cars," he said. "Regardless of what the minister has said, we still believe it's the best source."


Richard Walton, mayor of the District of North Vancouver

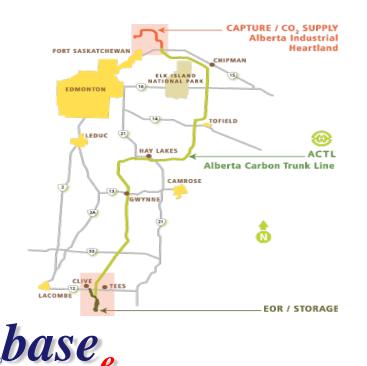
Oil Sands (aka, Tar Sands, XL Pipeline)

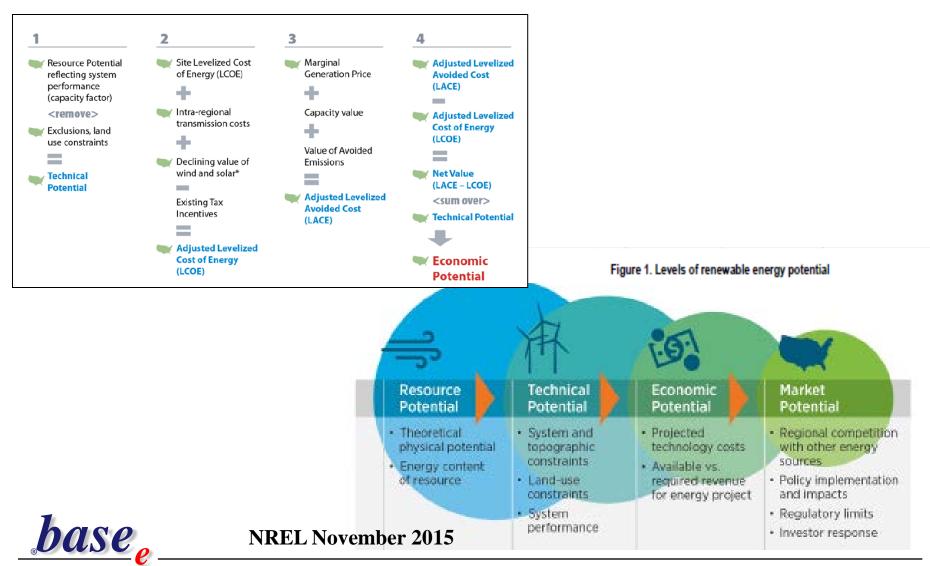
Petroleum products are produced from the oil sands through 3 basic steps:


- Extraction of the bitumen from the oil sands, where the solids and water are removed
- Upgrading of the heavy bitumen to a lighter, intermediate crude oil product
- Refining of the crude oil into final products such as fuels, lubricants and diluents.

There is no acknowledgment of the upgrade process or of CO₂ Capture in any of the rhetoric "south of the border"

There are currently 6 operating upgraders in Canada:


- 3 located north of Fort McMurray, AB (Suncor, Syncrude and CNRL)
- 1 located south of Fort McMurray, AB (CNOOC/Nexen)
- 1 located NE of Edmonton, AB (Shell), and
- 1 located in Lloydminster, SK (Husky).


Enhance Energy - Alberta Trunk Line

- At full capacity the ACTL route will provide access to reservoirs capable of producing an additional one billion barrels of high quality light crude oil.
- These reservoirs will safely and securely store 14.6 million tonnes of CO2 per year as the oil is produced.

- Enhance is still pursuing the construction and operation of the Alberta Carbon Trunkline targeting to be onstream with first CO2 injection at the end of 2016.
- North West Refining is significantly under construction.
 - -Committed over \$5Billion to the project (total cost \$8.5 B), a
 - -Scheduled to be in commercial operation in September 2017.
 - -Using Lurgi Rectisol was selected as pure CO2 is a byproduct of the process.
 - Other refineries use Steam Methane Reforming (SMR) which results in impure CO2 as a byproduct, which would require additional processing to allow for use in CO2 EOR or Carbon Capture and Utilization (CCUS).
- Shell Quest project is operational as of June 2015.
 - -Presently they are injecting their CO2 into an aquifer approximately 100 kms Northeast of Edmonton.
- Weyburn CO2
 - DGC (Dakota Gasification Company) in Beulah North Dakota.
 - Weyburn is also receiving CO2 from the SaskPower Boundary Dam project

NREL Levels of Renewable Energy Potential

Economic Potential – U.S. Renewables

Table ES-1. Aggregated Estimated U.S. Economic Potential for Primary Cases

		Economic	Potential	- Annual (Generation	(TWh)		
Dimen Com	S	Minut		DPV ⁵		Geo-		Sum of
Primary Case	Specific Cases	Wind	UPV	DPV	power	thermal	power	Assessed
Reference Data	2013 Generation ¹	168	11	10	269	17	60	534
Reference Data	Technical Potential ²	22,195	297,475	1,560	278	234	445	322,187
Drimony Const 1 LACE Only 3	Primary Case with Full Capacity Value	319	6,468	194	50	109	0	7,140
Primary Case 1 - LACE Only ³	Primary Case with No Capacity Value	135	2,789	194	38	29	0	3,184
Primary Case 2 - LACE including	Primary Case with Full Capacity Value	7,870	33,523	287	76	153	0	41,909
Value of Avoided External Costs ³	Primary Case with No Capacity Value	4,590	7,713	287	64	131	0	12,785
Primary Case 3 - LACE including Value of Avoided External Costs	Primary Case with Full Capacity Value*	869	606	287	76	153	0	1,991
and Declining Value of Variable Generation ⁴	Primary Case with No Capacity Value*	548	430	287	64	131	0	1,460

Generated in 2012 – 4048

(36%)

1 As reported in 2013 Renewable Energy Data Book (2014); including Alaska and Hawaii. Total generaton from all sources in 2013 was ~ 4100 Twh.

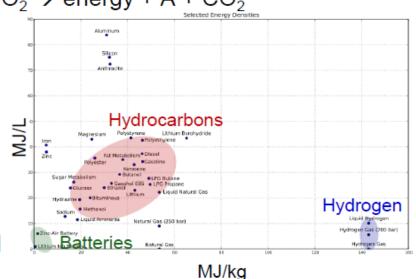
2 As updated in this report; excluding Alaska and Hawaii. Estimates may differ from prior assessments including Lopez et al. (2012) due to differences in the classification of resources (e.g., in some cases hydropower upgrades are not considered as new technical potential), advancements in technology (e.g., the availability of higher productivity wind turbines), or other factors.

3 Does not include Alaska and Hawaii; in addition to existing generation.

4 Does not include Alaska and Hawaii; in addition to existing generation. Declining value applied to Wind and UPV only. An asterisk symbol (*) to the right of a case name indicates that wind generation potential exceeds 40% of 2013 total generation in some regions and may be overstated as the declining value method applied does not reduce the value of wind further as its potential share of generation exceeds 40%.

5 Not all cases run for DPV, hydropower, geothermal, and biopower; gray-shaded cells indicate that another case is used as a substitute.

Notes


NREL November 2015

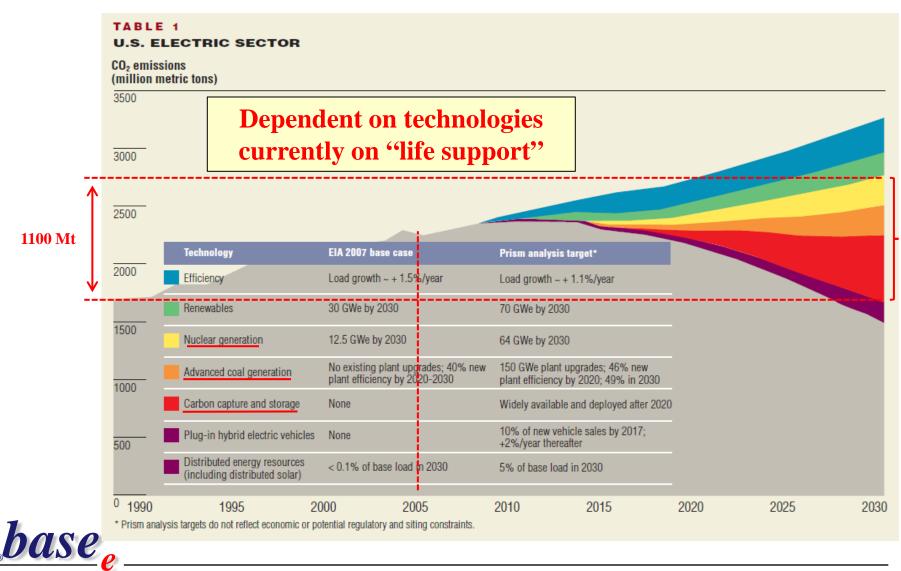
Conversion of CO₂ to Fuels

- Converting CO₂ to fuels is just a means of energy storage
 - <u>Creating fuel</u>: $CO_2 + A + energy \rightarrow Fuel + O_2$
 - Consuming fuel:

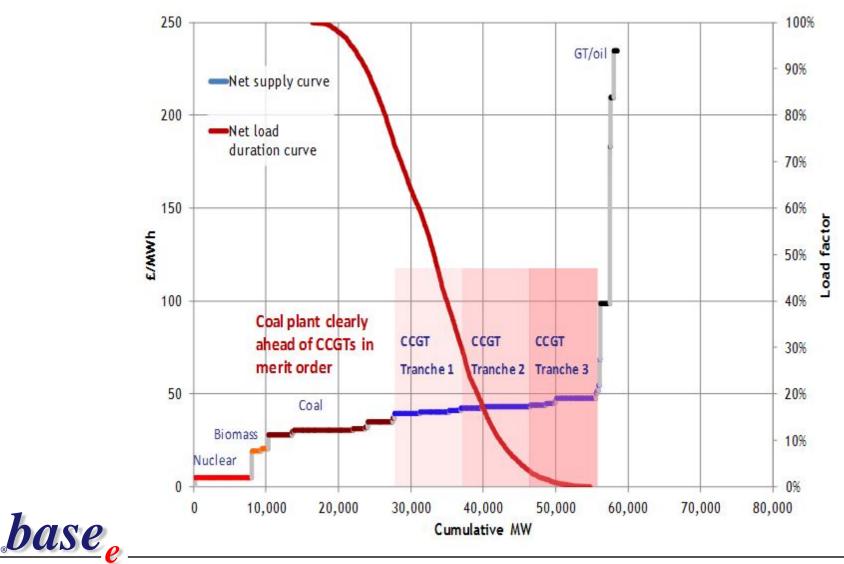
Fuel + $O_2 \rightarrow$ energy + A + CO_2

- Uses primary energy source to convert CO₂ into a hydrocarbon
- Liquid fuels can be useful
 - High energy density
 - But emit CO₂ when burned
- Round Trip Efficiency 6 18%

base


"Practical Strategies for Emerging Energy Technologies"

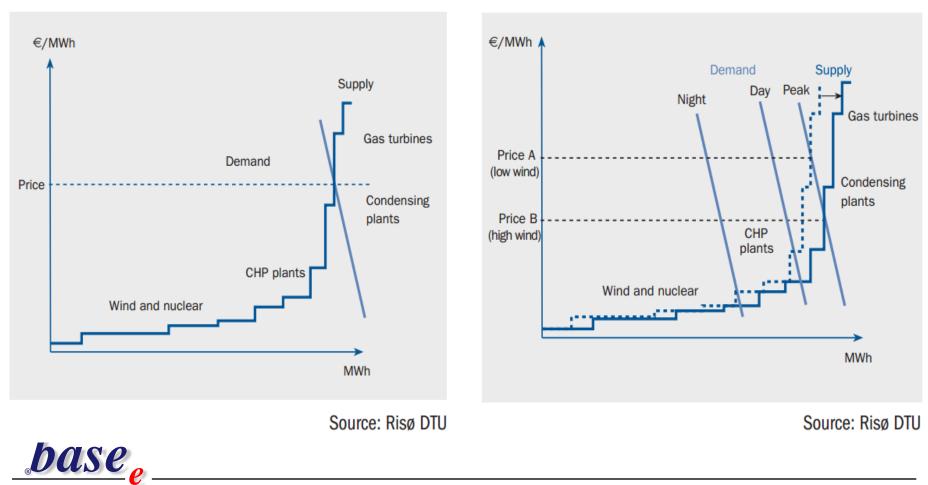
Source: Adam Berger - EPRI


CO₂ vs. Top 50 Chemical Produced

		US Production, Estimated 2009		Global Production, E		
			GWeat 90%			GWeat 90%
	Mt/yr	Gmol/yr	capture	Mt/yr	Gmol/yr	capture
Sulfuric Acid	38.7	394	2.1	199.9	1879	10.0
Nitrogen	32.5	1159	6.2	139.6	4595	24.5
Ethylene	25.0	781	4.2	112.6	3243	17.3
Oxygen	23.3	829	4.4	100.0	3287	17.5
Lime	19.4	347	1.8	283.0	4653	24.8
Polyethylene(HDPE, LDPE, LLDPE, etc.)	17.0	530	2.8	60.0	1729	9.2
Propylene	15.3	354	1.9	53.0	1134	6.0
Ammonla, Synthetic Anhydrous	13.9	818	4.4	153.9	8332	44.3
Chlorine	12.0	169	0.9	61.2	795	4.2
Phosphoric Acid	11.4	116	0.6	22.0	207	1.1
 Acetic Acid	23	38		8.0		0.7
						0.5
						0.3
						0.6
						0.9
	1.0			2-2		
	410	-			•	257
		0,001		2,412	40,000	>1000+
· · · · ·						
• • •			314			>1000+
CO ₂ from Electricity	2,400	54,545	\smile	~9600	218,182	
CO ₂ from All Sources	6,000	136,364		~31200	750,000	\sim
	A + CC	$D_2 \rightarrow A($	CO ₂	$\overline{}$		
Limited supr		~	~	f ACO-		
				~		
Need to regenera	ate A or r	make A	without pr	oducing (O_2	
Bhowr	and Freema	n. Environ	Sci. Tech., 45, 8	624, 2011	COP	ELECTRIC POWER
Electric Power Research Institute, Inc. All rights reserved.		6				RESEARCH INSTI
	Oxygen Lime Polyethylene(HDPE, LDPE, LLDPE, etc.) Propylene Ammonla, Synthetic Anhydrous Chlorine Phosphoric Acid Acetic Acid Propylene Oxide Phenolic Resins Calcium Carbonate (Precipitated) Butadiene (1.3) Nylon Resins & Fibers TOTAL 2009 Coal-fired Net Generation, GWe-yr Coal-fired Capacity, GWe CO ₂ from Electricity CO ₂ from All Sources Limited supp Need to regenera	Oxygen23.3Lime19.4Polyethylene(HDPE, LDPE, LLDPE, etc.)17.0Propylene15.3Ammonla, Synthetic Anhydrous13.9Chlorine12.0Phosphoric Acid11.4Acetic Acid2.3Propylene Oxide2.1Phenolic Resins2.1Calcium Carbonate (Precipitated)2.0Butadiene (1.3)2.0Nylon Resins & Fibers19TOTAL4192009 Coal-fired Net Generation, GWe-yr2,400Coal-fired Capacity, GWe2,400CO2 from Electricity2,400CO2 from All Sources6,000A + CCLimited supplies of ANeed to regenerate A or IBhown and Freema	Oxygen23.3829Lime19.4347Polyethylene(HDPE, LDPE, LLDPE, etc.)17.0530Propylene15.3354Ammonla, Synthetic Anhydrous13.9818Chlorine12.0169Phosphoric Acid11.4116Acetic Acid2.338Propylene Oxide2.137Phenolic Resins2.121Calcium Carbonate (Precipitated)2.020Butadiene (1.3)2.036Nylon Resins & Fibers198TOTAL4198,6812009 Coal-fired Net Generation, GWe-yr2,40054,545CO2 from Electricity2,40054,545CO2 from All Sources136,364 $A + CO_2 \rightarrow AC$ Limited supplies of A & limitNeed to regenerate A or make ABhown and Freeman, Environ. S	Oxygen23.38294.4Lime19.43471.8Polyethylene(HDPE, LDPE, LLDPE, etc.)17.05302.8Propylene15.33541.9Ammonla, Synthetic Anhydrous13.98184.4Chlorine12.01690.9Phosphoric Acid11.41160.6Acetic Acid2.3380.2Propylene Oxide2.1370.2Phenolic Resins2.1210.1Calcium Carbonate (Precipitated)2.0200.1Butadiene (1.3)2.0360.2Nylon Resins & Fibers198462009 Coal-fired Net Generation, GWe-yr24198,68146CO2 from Electricity6,000136,364200CO2 from All Sources6,000136,364 $A + CO_2 \rightarrow ACO_2$ Limited supplies of A & limited sales of Need to regenerate A or make A without prBhown and Freeman, Environ. Sci. Tech., 45, 8	Oxygen 23.3 829 4.4 100.0 Lime 19.4 347 1.8 283.0 Polyethylene(HDPE, LDPE, LLDPE, etc.) 17.0 530 2.8 60.0 Propylene 15.3 354 1.9 53.0 Ammonla, Synthetic Anhydrous 13.9 818 4.4 153.9 Chlorine 12.0 169 0.9 61.2 Phosphoric Acid 11.4 116 0.6 22.0 Acetic Acid 2.3 38 0.2 6.3 Propylene Oxide 2.1 37 0.2 6.3 Propylene Oxide 2.1 21 0.1 6.8 Calcium Carbonate (Precipitated) 2.0 20 0.1 13.0 Butadiene (1.3) 2.0 36 0.2 10.3 Nylon Resins & Fibers 10.9 8 416 200 314 2009 Coal-fired Net Generation, GWe-yr 2419 8.681 46 412 20.2 from	Oxygen 23.3 829 4.4 100.0 3287 Lime 19.4 347 1.8 283.0 4653 Polyethylene(HDPE, LDPE, LDPE, LLDPE, etc.) 17.0 530 2.8 60.0 1729 Propylene 15.3 354 1.9 53.0 1134 Anmonla, Synthetic Anhydrous 13.9 818 4.4 153.9 8332 Chlorine 12.0 169 0.9 61.2 795 Phosphoric Acid 11.4 116 0.6 22.0 207 Acetic Acid 2.3 38 0.2 8.0 123 Propylene Oxide 2.1 37 0.2 6.3 100 Phenolic Resins 2.1 2.0 2.0 1.3 120 Butadiene (1.3) 2.0 36 0.2 10.3 175 Nylon Resins & Fibers 19 8 46 200 314 -9600 218,182 CO_2 from Electricity 6,000

Electric Power Research Institute PRISM Analysis

Traditional Generation Merit Order

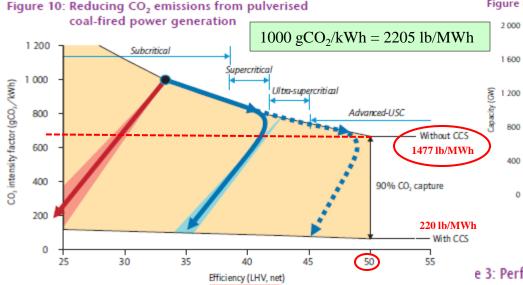


"Practical Strategies for Emerging Energy Technologies"

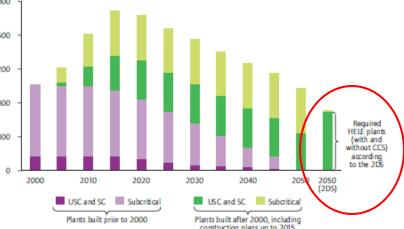
Shift in Supply Cost Curve with Renewables

FIGURE 0.10: Supply and Demand Curve for the NordPool Power Exchange

FIGURE 0.11: How wind power influences the power spot price at different times of day



EPA Final Rule for Existing Plants "Clean Power Plan"

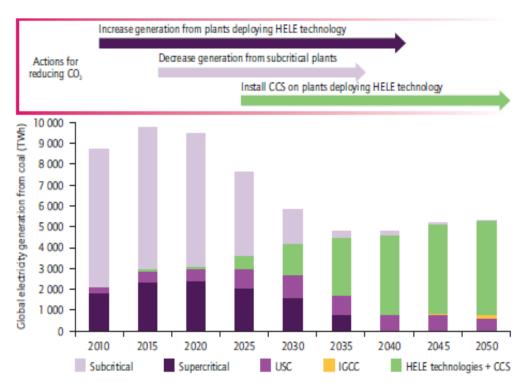

- In its final rule for existing fossil fuel-fired plants, EPA establishes mandatory CO2 emissions "goals" for each state's electricity sector, including "interim" goals beginning in 2022 (separated into three steps in 2022-2024, 2025-2027, and 2028-2029), and a "final" goal in 2030.
- The mandatory goals are expressed in terms of statewide rate-based and mass-based CO2 emissions goals. The goals are calculated based on 2012 emissions data, and EPA has prepared "State Specific Fact Sheets" and a Table estimating the percentage reductions from 2012 CO2 emissions.
- For existing fossil fuel-fired electric generating units, EPA has determined that three "building blocks" reflect the BSER, including:
 - -1) Heat rate improvements at existing coal units;
 - -2) Shifting from coal-fired generation to generation from existing NGCC units; and
 - -3) Shifting from coal-fired generation to generation from renewables, primarily wind and solar.
- EPA calculates state goals based on this BSER, and has developed separate emissions performance rates for coal and natural gas plants, including:
 - An interim emissions rate for existing coal units of 1,534 lbs CO2 per Net MWh, and a final rate of 1,305 lbs CO2 per Net MWh
 - An interim emissions rate for existing natural gas units of 832 lbs CO2 per Net MWh and the final rate is 771 lbs CO2 per Net MWh.
 - Under the rule, states would be required to submit detailed plans to meet their mandatory CO2 goals.
- EPA states: "One cost-effective way that states can meet their goals is emissions trading, through which affected
 power plants may meet their emission standards via emission rate credits (for a rate-based standard) or allowances
 (for a mass-based standard)."

High Efficiency, Low Emissions Coal (HELE)

Figure 8: Projected capacity of coal-fired power generation to 2050

e 3: Performance of HELE coal-fired power technologies

5 I	Plant		Emis	sions		Max. unit	Capacity	CCS energy	
Fuel type	type	CO ₂ (g/kWh)	NO _X	SO ₂ (mg/Nm²)	РМ	capacity (MWe)	factor (%)	penalty (%-points)	
	PC (USC)	740	<50 to 100 (by SCR)	<20 to 100 (by FGD)	<10	1 100 ³	80	7 to 10	
	CFBC	880 to 900	<200	<50 to 100 (in situ)	<50	460	80	(post- combustion	
Coal	PC (A-USC) ¹	670 (700°C)	<50 to 100 (by SCR)	<20 to 100 (by FGD)	<10	<1 000 (possible)		and oxy- fuel)	
	IGCC ^{1,2}	670 to 740	<30	<20	<1	335	70	-	
	IGFC ¹	500 to 550	<30	<20	<1	<500		7	

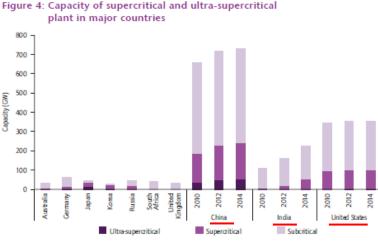

- U.S. consumption of coal totaled 18 quadrillion Btu in 2013, a 4-percent increase from 2012
- Electric power sector consumption accounted for 91 percent of total consumption in 2013
- The price of coal averaged \$2.52 per million Btu in the United States in 2013, a 3-percent decrease from 2012
- Prices ranged from \$1.44 per million Btu in Nebraska to \$4.90 per million Btu in Alaska.

Source: IEA Technology Roadmap High Efficiency Low Emissions Coal-fired Power Generation

Coal-fired PowerGen Options - 2DS

Figure 7: Electricity generation from different coal-fired power technologies in the 2DS

Note: Carbon capture is integrated with HELE coal-fired units to minimise coal consumption and CO, abatement cost.


Source: IEA Technology Roadmap

High Efficiency Low Emissions Coal-fired Power Generation

1000 gCO2/kWh = 2204 lb/MWh

"Practical Strategies for Emerging Energy Technologies"

Note: Refers to capacity in 2010 unless specified otherwise. Definitions of subcritical, supercritical (SC) and ultra-supercritical (USC) technology are described in Box 3. Source: Plats, 2011.

Table 1: CO₂ intensity factors and fuel consumption values

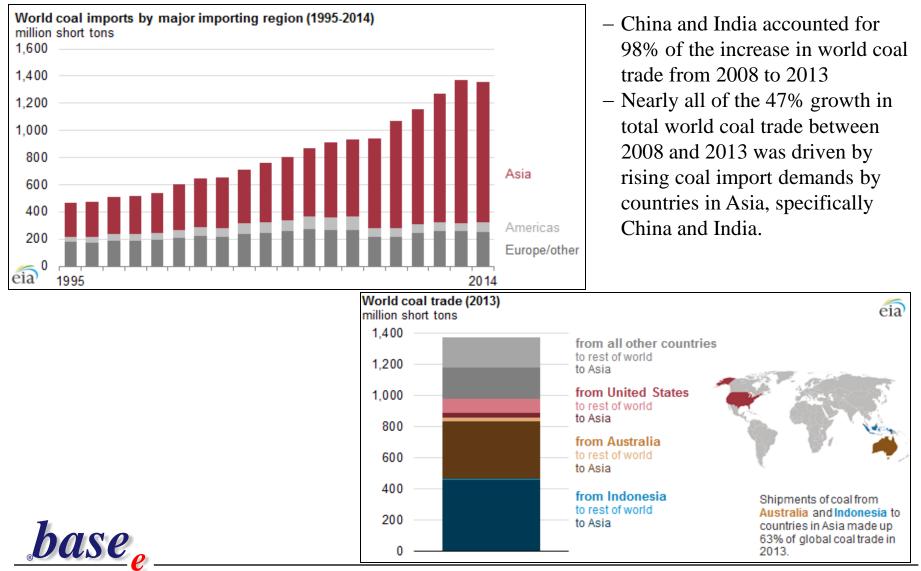
	CO ₁ intensity factor (Efficiency [LHV, net])	Coal consumption ¹
A-USC (700°C ²) IGCC (1 500°C ³)	670-740 g CO ₂ /kWh (45-50%)	290-320 g/kWh
Ultra-supercritical	740-800 g CO CO ₂ /kWh (up to 45%)	320-340 g/kWh
Supercritical	800-880 g CO CO ₂ /kWh (up to 45%)	340-380 g/kWh
Subcritical	≥880 g CO CO₂/kWh (up to 45%)	≥380 g/kWh

1 For coal with heating value 25 MJ/kg; 2 Steam temperature; 3 Turbine Inlet temperature.

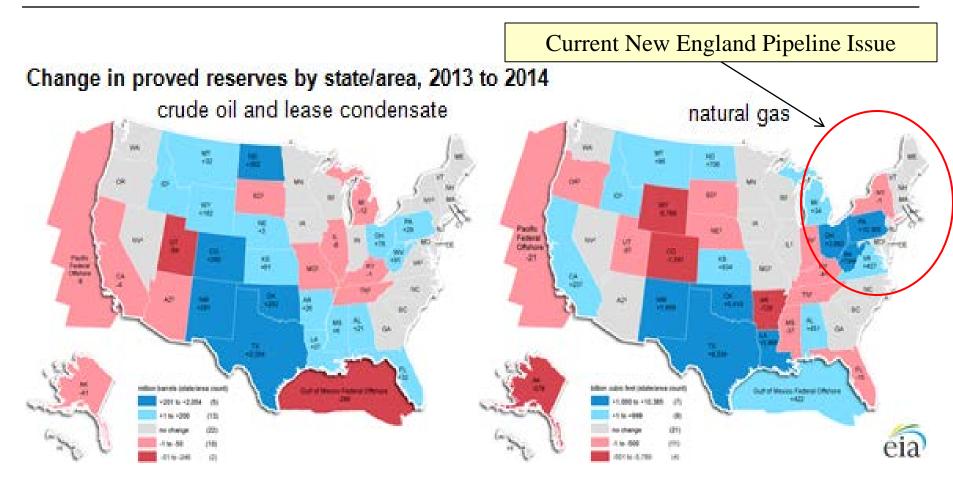
Note: The CO₂ intensity factor is the amount of carbon dioxide emitted per unit of electricity generated from a plant. For example, a CO₂ intensity factor of 800g CO₂/kWh means that the coal-fired unit emits 800g of CO₂ for each kWh of electricity generated. Source: VBG, 2011.

EPA Output Ratings 2015 – lb-CO₂/MWh

Fuel	Subbituminous Coal						Lig	nite	
Carbon Factor - Ib-CO2/mmBtu	208.8	208.8	208.8	208.8		215.6	215.6	215.6	215.6
Power Plant									
- Туре	PC	SCPC	USCPC	USCPC	-	PC	SCPC	USCPC	USCPC
- Heat Rate (HHV) - Btu/kWh	8795	8268	7975	7187		8795	8268	7975	7187
- Efficiency - HHV%	38.8%	41.3%	42.8%	47.5%		38.8%	41.3%	42.8%	47.5%
- Efficiency - LHV%	43.1%	45.8%	47.5%	52.7%		43.1%	45.8%	47.5%	52.7%
- Thermal Input - mmBtu	850	850	850	850		850	850	850	850
- Rating - MW@850 mmBtu/hr	96.65	102.80	106.58	118.28	•	96.65	102.80	106.58	118.28
Emissions - Ib-CO2/MWh									
- Unabated	1836.7	1726.8	1665.6	1500.9		1896.2	1782.7	1719.6	1549.5
- Applicable Threshold									
- Interim	1534	1534	1534	1534		1534	1534	1534	1534
- Final	1305	1305	1305	1305		1305	1305	1305	1305
CCS % required to meet final threshold	28.95%	24.43%	21.65%	13.05%		31.18%	26.80%	24.11%	15.78%
	_0.0070	2111070	21.0070	10.0070		5111070	20.0070	21.11/0	1011070



EPA NSPS Output Ratings 2014 – lb-CO₂/MWh


Fuel		Subbitum	inous Coal			Lig	nite	
Carbon Factor - Ib-CO2/mmBtu	208.8	208.8	208.8	208.8	215.6	215.6	215.6	215.6
Power Plant								
- Туре	PC	SCPC	USCPC	USCPC	 PC	SCPC	USCPC	USCPC
- Heat Rate (HHV) - Btu/kWh	9276	8721	8412	7580	9276	8721	8412	7580
- Efficiency - HHV%	36.8%	39.1%	40.6%	45.0%	 36.8%	39.1%	40.6%	45.0%
- Efficiency - LHV%	40.8%	43.4%	45.0%	50.0%	40.8%	43.4%	45.0%	50.0%
- Thermal Input - mmBtu	850	850	850	850	850	850	850	850
- Rating - MW@850 mmBtu/hr	91.63	97.47	101.05	112.14	91.63	97.47	101.05	112.14
Emissions - Ib-CO2/MWh								
- Unabated	1937.2	1821.3	1756.7	1583.0	2000.0	1880.3	1813.7	1634.3
- Applicable Threshold	1000	1000	1000	1000	1000	1000	1000	1000
CCS % required to meet threshold	48.4%	45.1%	43.1%	36.8%	50.0%	46.8%	44.9%	38.8%

India & China Drive Recent Changes in Coal Trade



Proven Reserves – U.S.

CO₂ Power Plant/Capture Options

State Preparedness

Areas of Interest:

- Extreme heat
- Summer draught
- Wildfires
- Inland flooding
- Coastal flooding

BEST GRAD	E	WORST GRADE				
California	Α	Arkansas	F			
New York	Α	Texas	F			
Massachusetts	Α	Nevada	F			
Pennsylvania	Α	Mississippi	F			
Connecticut	A-	Missouri	F			
Delaware	B+	Alabama	D-			
North Carolina	B+	Ohio	D-			
Maryland	B+	Montana	D-			
Washington	B+	South Dakota	D-			
Virginia	В	Kentucky	D			

U.S. GHG Gas Emissions & Sinks – CO₂

					_		_
1990	2005		2009	2010	2011	2012	2013
5,123.7	6,134.0		5,500.6	5,704.5	5,568.9	5,358.3	5,505.2
4,740.7	5,747.7		5,197.1	5,367.1	5,231.3	5,026.0	5,157.7
1,820.8	2,400.9		2,145.7	2,258.4	2,157.7	2,022.2	2,039.8
1,493.8	1,887.8		1,720.3	1,732.0	1,711.5	1,700.8	1,718.4
842.5	827.8		727.7	775.7	774.1	784.2	817.3
338.3	357.8		336.4	334.7	327.2	283.1	329.6
217.4	223.5		223.5	220.2	221.0	197.1	220.7
27.9	49.9		43.5	46.2	39.8	38.6	32.0
117.7	138.9		106.0	114.6	108.4	104.9	119.8
99.8	66.7		43.0	55.7	60.0	54.3	52.3
37.6	30.0		32.2	32.3	35.6	34.8	37.8
33.3	45.9		29.4	31.3	32.0	35.1	36.1
21.6	28.1		23.7	27.4	26.4	26.5	26.5
11.7	14.6		11.4	13.4	14.0	13.7	14.1
13.0	9.2		8.5	9.2	9.3	9.4	10.2
8.0	12.5		11.3	11.0	10.5	10.4	10.1
4.4	4.9		4.7	4.2	4.5	5.1	6.0
4.7	4.3		3.7	4.8	3.9	5.8	5.9
3.8	3.7		3.4	4.7	4.0	4.4	4.7
	5,123.7 4,740.7 1,820.8 1,493.8 842.5 338.3 217.4 27.9 117.7 99.8 37.6 33.3 21.6 11.7 13.0 8.0 4.4 4.7	5,123.7 6,134.0 4,740.7 5,747.7 1,820.8 2,400.9 1,493.8 1,887.8 842.5 827.8 338.3 357.8 217.4 223.5 27.9 49.9 117.7 138.9 99.8 66.7 37.6 30.0 33.3 45.9 21.6 28.1 11.7 14.6 13.0 9.2 8.0 12.5 4.4 4.9 4.7 4.3	5,123.7 6,134.0 4,740.7 5,747.7 1,820.8 2,400.9 1,493.8 1,887.8 842.5 827.8 338.3 357.8 217.4 223.5 27.9 49.9 117.7 138.9 99.8 66.7 37.6 30.0 33.3 45.9 21.6 28.1 11.7 14.6 13.0 9.2 8.0 12.5 4.4 4.9 4.7 4.3	5,123.7 $6,134.0$ $5,500.6$ $4,740.7$ $5,747.7$ $5,197.1$ $1,820.8$ $2,400.9$ $2,145.7$ $1,493.8$ $1,887.8$ $1,720.3$ 842.5 827.8 727.7 338.3 357.8 336.4 217.4 223.5 223.5 27.9 49.9 43.5 117.7 138.9 106.0 99.8 66.7 43.0 37.6 30.0 32.2 33.3 45.9 29.4 21.6 28.1 23.7 11.7 14.6 11.4 13.0 9.2 8.5 8.0 12.5 11.3 4.4 4.9 4.7 4.7 4.3 3.7	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $1,820.8$ $2,400.9$ $2.145.7$ $2.258.4$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ 842.5 827.8 727.7 775.7 338.3 357.8 336.4 334.7 217.4 223.5 223.5 220.2 27.9 49.9 43.5 46.2 117.7 138.9 106.0 114.6 99.8 66.7 43.0 55.7 37.6 30.0 32.2 32.3 33.3 45.9 29.4 31.3 21.6 28.1 23.7 27.4 11.7 14.6 11.4 13.4 13.0 9.2 8.5 9.2 8.0 12.5 11.3 11.0 4.4 4.9 4.7 4.2 4.7 4.3 3.7 4.8	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $5,568.9$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $5,231.3$ $1,820.8$ $2,400.9$ $2.145.7$ $2,258.4$ $2.157.7$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ $1,711.5$ 842.5 827.8 727.7 775.7 774.1 338.3 357.8 336.4 334.7 327.2 217.4 223.5 223.5 220.2 221.0 27.9 49.9 43.5 46.2 39.8 117.7 138.9 106.0 114.6 108.4 99.8 66.7 43.0 55.7 60.0 37.6 30.0 32.2 32.3 35.6 33.3 45.9 29.4 31.3 32.0 21.6 28.1 23.7 27.4 26.4 11.7 14.6 11.4 13.4 14.0 13.0 9.2 8.5 9.2 9.3 8.0 12.5 11.3 11.0 10.5 4.4 4.9 4.7 4.2 4.5	5,123.7 $6,134.0$ $5,500.6$ $5,704.5$ $5,568.9$ $5,358.3$ $4,740.7$ $5,747.7$ $5,197.1$ $5,367.1$ $5,231.3$ $5,026.0$ $1,820.8$ $2,400.9$ $2,145.7$ $2,258.4$ $2,157.7$ $2,022.2$ $1,493.8$ $1,887.8$ $1,720.3$ $1,732.0$ $1,711.5$ $1,700.8$ 842.5 827.8 727.7 775.7 774.1 784.2 338.3 357.8 336.4 334.7 327.2 283.1 217.4 223.5 223.5 220.2 221.0 197.1 27.9 49.9 43.5 46.2 39.8 38.6 117.7 138.9 106.0 114.6 108.4 104.9 99.8 66.7 43.0 55.7 60.0 54.3 37.6 30.0 32.2 32.3 35.6 34.8 33.3 45.9 29.4 31.3 32.0 35.1 21.6 28.1 23.7 27.4 26.4 26.5 11.7 14.6 11.4 13.4 14.0 13.7 13.0 9.2 8.5 9.2 9.3 9.4 8.0 12.5 11.3 11.0 10.5 10.4 4.4 4.9 4.7 4.2 4.5 5.1 4.7 4.3 3.7 4.8 3.9 5.8

<u>base</u>

EPA GHG Inventory 1990-2013 Table ES-2 (page 1)

U.S. GHG Gas Emissions & Sinks – CO₂

Other Process Uses of Carbonates	4.9	6.3	7.6	9.6	9.3	8.0	4.4	
Urea Fertilization	2.4	3.5	3.6	3.8	4.1	4.2	4.0	
Aluminum Production	6.8	4.1	3.0	2.7	3.3	3.4	3.3	
Soda Ash Production and								
Consumption	2.7	2.9	2.5	2.6	2.6	2.7	2.7	
Ferroalloy Production	2.2	1.4	1.5	1.7	1.7	1.9	1.8	
Titanium Dioxide Production	1.2	1.8	1.6	1.8	1.7	1.5	1.6	
Zinc Production	0.6	1.0	0.9	1.2	1.3	1.5	1.4	
Phosphoric Acid Production	1.6	1.4	1.0	1.1	1.2	1.1	1.2	
Glass Production	1.5	1.9	1.0	1.5	1.3	1.2	1.2	
Carbon Dioxide Consumption	1.5	1.4	1.8	1.2	0.8	0.8	0.9	
Peatlands Remaining Peatlands	1.1	1.1	1.0	1.0	0.9	0.8	0.8	
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5	
Silicon Carbide Production and								
Consumption	0.4	0.2	0.1	0.2	0.2	0.2	0.2	
Magnesium Production and								
Processing	+	+	+	+	+	+	+	
Land Use, Land-Use Change, and	(775.0)	(011.0)	(0.7.0.0)	(0.7.1	(0.0.7.0)	(222.4)	(001.5)	
Forestry (Sink) ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)	
Wood Biomass and Ethanol	210 4	220.0	250.5	265 1	260 1	2677	202.2	
Consumption ^b	219.4	229.8	250.5	265.1	268.1	267.7	283.3	
International Bunker Fuels ^c	103.5	113.1	106.4	117.0	111.7	105.8	99.8	

EPA GHG Inventory 1990-2013 Table ES-2 (page 2)

"Practical Strategies for Emerging Energy Technologies"

base

U.S. GHG Gas Emissions & Sinks – CH4 Methane

CH4	745.5	707.8	709.5	667.2	660.9	647.6	636.3			
Enteric Fermentation	164.2	168.9	172.7	171.1	168.7	166.3	164.5			
Natural Gas Systems	179.1	176.3	168.0	159.6	159.3	154.4	157.4			
Landfills	186.2	165.5	158.1	121.8	121.3	115.3	114.6			
Coal Mining	96.5	64.1	79.9	82.3	71.2	66.5	64.6			
Manure Management	37.2	56.3	59.7	60.9	61.4	63.7	61.4			
Petroleum Systems	31.5	23.5	21.5	21.3	22.0	23.3	25.2			
Wastewater Treatment	15.7	15.9	15.6	15.5	15.3	15.2	15.0			
Rice Cultivation	9.2	8.9	9.4	11.1	8.5	9.3	8.3			
Stationary Combustion Abandoned Underground Coal	8.5	7.4	7.4	7.1	7.1	6.6	8.0			
Mines	7.2	6.6	6.4	6.6	6.4	6.2	6.2			
Forest Fires	2.5	8.3	5.8	4.7	14.6	15.7	5.8			
Mobile Combustion	5.6	3.0	2.3	2.3	2.3	2.2	2.1			
Composting Iron and Steel Production &	0.4	1.9	1.9	1.8	1.9	1.9	2.0			
Metallurgical Coke Production Field Burning of Agricultural	1.1	0.9	0.4	0.6	0.7	0.7	0.7			
Residues	0.3	0.2	0.3	0.3	0.3	0.3	0.3			
Petrochemical Production	0.2	0.1	+	0.1	+	0.1	0.1			
Ferroalloy Production Silicon Carbide Production and	+	+	+	+	+	+	+			
Consumption	+	+	+	+	+	+	+			
Peatlands Remaining Peatlands	+	+	+	+	+	+	+			
Incineration of Waste	+	+	+	+	+	+	+			
International Bunker Fuels ^c	0.2	0.1	0.1	0.1	0.1	0.1	0.1			
EPA GHG Inventory 1990-2013 Table ES-2 (page 3)										

U.S. GHG Gas Emissions & Sinks – N₂O

N ₂ O	329.9	355.9	356.1	360.1	371.9	365.6	355.2
Agricultural Soil Management	224.0	243.6	264.1	264.3	265.8	266.0	263.7
Stationary Combustion	11.9	20.2	20.4	22.2	21.3	21.4	22.9
Mobile Combustion	41.2	38.1	24.6	23.7	22.5	20.2	18.4
Manure Management	13.8	16.4	17.0	17.1	17.3	17.3	17.3
Nitric Acid Production	12.1	11.3	9.6	11.5	10.9	10.5	10.7
Wastewater Treatment	3.4	4.3	4.6	4.7	4.8	4.9	4.9
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Adipic Acid Production	15.2	7.1	2.7	4.2	10.2	5.5	4.0
Forest Fires	1.7	5.5	3.8	3.1	9.6	10.3	3.8
Settlement Soils	1.4	2.3	2.2	2.4	2.5	2.5	2.4
Composting	0.3	1.7	1.7	1.6	1.7	1.7	1.8
Forest Soils	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Semiconductor Manufacture	+	0.1	0.1	0.1	0.2	0.2	0.2
Field Burning of Agricultural							
Residues	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.9	1.0	0.9	1.0	1.0	0.9	0.9

base.

EPA GHG Inventory 1990-2013 Table ES-2 (page 4)

U.S. GHG Gas Emissions & Sinks – HFC's+

HFCs	46.6	131.4	142.9	152.6	157.4	159.2	163.0
Substitution of Ozone Depleting							
Substances ^d	0.3	111.1	136.0	144.4	148.4	153.5	158.6
HCFC-22 Production	46.1	20.0	6.8	8.0	8.8	5.5	4.1
Semiconductor Manufacture	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Magnesium Production and							
Processing	0.0	0.0	+	+	+	+	0.1
PFCs	24.3	6.6	3.9	4.4	6.9	6.0	5.8
Aluminum Production	21.5	3.4	1.9	1.9	3.5	2.9	3.0
Semiconductor Manufacture	2.8	3.2	2.0	2.6	3.4	3.0	2.9
SF ₆	31.1	14.0	9.3	9.5	10.0	7.7	6.9
Electrical Transmission and							
Distribution	25.4	10.6	7.3	7.0	6.8	5.7	5.1
Magnesium Production and							
Processing	5.2	2.7	1.6	2.1	2.8	1.6	1.4
Semiconductor Manufacture	0.5	0.7	0.3	0.4	0.4	0.4	0.4
NF3	+	0.5	0.4	0.5	0.7	0.6	0.6
Semiconductor Manufacture	+	0.5	0.4	0.5	0.7	0.6	0.6
Total Emissions	6,301.1	7,350.2	6,722.7	6,898.8	6,776.6	6,545.1	6,673.0
Total Sinks ^a	(775.8)	(911.9)	(870.9)	(871.6)	(881.0)	(880.4)	(881.7)
Net Emissions (Sources and Sinks)	5,525.2	6,438.3	5,851.9	6,027.2	5,895.6	5,664.7	5,791.2

EPA GHG Inventory 1990-2013 Table ES-2 (page 5)